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1 Basic Concepts

An axiomatic system contains a set of primitives and axioms. The primitives are
object names, but the objects they name are left undefined. This is why the primi-
tives are also called undefined terms. The axioms are sentences that make assertions
about the primitives. Such assertions are not provided with any justification, they
are neither true nor false. However, every subsequent assertion about the primitives,
called a theorem, must be a rigorously logical consequence of the axioms and previ-
ously proved theorems. There are also formal definitions in an axiomatic system, but
these serve only to simplify things. They establish new object names for complex
combinations of primitives and previously defined terms. This kind of definition does
not impart any ‘meaning’, not yet, anyway.

If, however, a definite meaning is assigned to the primitives of the axiomatic system,
called an interpretation, then the theorems become meaningful assertions which might
be true or false. If for a given interpretation all the axioms are true, then everything
asserted by the theorems also becomes true. Such an interpretation is called a model
for the axiomatic system.

In common speech, ‘model’ is often used to mean an example of a class of things. In
geometry, a model of an axiomatic system is an interpretation of its primitives for
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which its axioms are true. Since a contradiction can never be true, an axiom system
in which a contradiction can be logically deduced from the axioms has no model.
Such an axiom system is called inconsistent. On the other hand, if an abstract axiom
system does have a model, then it must be consistent because each axiom is true,
each theorem is a logical consequence of the axioms, and hence it is true, and a
contradiction cannot be true.

Finally, an axiom system might have more than one model. If two models of the
same axiom system can be shown to be structurally equivalent, they are said to be
isomorphic. 1f all models of an axiom system are isomorphic then the axiom system
is said to be categorical. Thus for a categorical axiom system one may speak of the
model; the one and only interpretation in which its theorems are all true.

All of these qualities: truth, logical necessity, consistency, uniqueness were tacitly
believed to be the hallmark of classical Euclidean geometry. At the start of the
19th century, a scant 200 years ago, philosophers and theologians, physicists and
mathematicians were all persuaded that Euclidean geometry was absolutely the one
and only way to think about space, and therefore it was the job of geometers to
develop their science in such a way as to demonstrate this necessary truth. By the
end of the century, this belief had been thoroughly discredited and abandoned by all
mathematicians.’

The main theme of our course concerns the evolution of this idea, and its replacement
by the much richer, far more illuminating, post-Euclidean geometry of today. It is
about a method of thought, called the axiomatic method. Although at one time this
method may have developed merely from a practical need to verify the rules obtained
from the careful observation of physical experiments, this changed with the Greek
philosophers. The axiomatic method has formed the basis of geometry, and later all
of mathematics, for nearly twenty-five hundred years. It survived a crisis with the
birth of non-Euclidean geometry, and remains today one of the most distinguished
achievements of the human mind.

As we noted earlier, the transition of geometry from inductive inference to deductive
reasoning resulted in the development of axiomatic systems. Next, we look at four
axiom systems for Euclidean geometry, and close by constructing a model for one of
them.

!Curiously, it persists even today among some irresponsible, but influential amateurs. In her
column, “Ask Marilyn” in Parade Magazine, November 21, 1993, the world’s most intelligent woman
[sic] rejects Hyperbolic Geometry on nonsensical grounds, see http://en.wikipedia.org/wiki/
Marilyn_vos_Savant.
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2 Euclid’s Postulates:

Earlier, we referred to the basic assumptions as ‘axioms’. Fuclid divided these as-
sumptions into two categories — postulates and axioms. The assumptions that were
directly related to geometry, he called postulates. Those more related to common
sense and logic he called azioms. Although modern geometry no longer makes this
distinction, we shall continue the ancient custom and refer to axioms for geometry
also as postulates.

Here is a paraphrase? of the way Euclid expressed himself.

Let the following be postulated:

Postulate 1: To draw a straight line from any point to any point.
Postulate 2: To produce a finite straight line continuously in a straight line.
Postulate 3: To describe a circle with any center and distance.

Postulate 4: That all right angles are equal to one another.

Postulate 5: That, if a straight line falling on two straight lines makes the interior
angles on the same side less than two right angles, the two straight lines, if
produced indefinitely, meet on that side on which the angles are less than two
right angles.

Note that the wording suggests construction. Euclid assumed things that he felt
were too obvious to justify further. This caused his axiomatic system to be logically
incomplete. Consequently, other axiomatic systems were devised in an attempt to fill
in the gaps. We shall consider three of these, due to David Hilbert, (1899), George
Birkhoff, (1932) and the School Mathematics Study Group (SMSG), a committee
that began the reform of high school geometry in the 1960s.

2Thomas L. Heath, “The Thirteen Books of Euclid’s Elements”, Cambridge, 1908.
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3 Hilbert’s Postulates:

In the late 19th century began the critical examinations into the

foundations of geometry. It was around this time that David Hilbert(1862 - 1943)
introduced his axiomatic system. The primitives in Hilbert’s system are the sets of
points, lines, and planes and relations, such as

incidence: as in ‘a point A is on line ¢’
order: as in ‘C lies between points A and B’
congruence: as in ‘ line segments AB = A’B”

An example of a formal definition would be that of a line segment AB as the set
of points C' between A and B. He partitioned his axioms into five groups; axioms
of connection,order, parallels, congruence and continuity.® Hilbert’s axiom system
is important for the following two reasons. It is generally recognized as a flawless
version of what Fuclid had in mind to begin with. It is purely geometrical, in that
nothing is postulated concerning numbers and arithmetic. Indeed, it is possible to
model formal arithmetic inside Hilbert’s axiomatic system.

We wish to show how Euclidean geometry can be modelled inside arithmetic.* For
this purpose, we want the shortest possible list of primitives and postulates, for then,
we have less to check. Birkhoff meets this requirement.

4 Birkhoff’s postulates

The primitives here are the set of points, a system of subsets of points called lines, and
two real-valued functions, ‘distance’ and ‘angle’. That is, for any pair of points, the
distance d(A, B) is a positive real number. For any ordered triple of points A, Q, B,

3cf. Wallace and West, “Roads to Geometry”, Pearson 2003, Chapter 2 for a more detailed
discussion of Hilbert’s axioms.

4The historical significance of these two exercises in building models of formal systems is the
irrefutable demonstration that geometry and arithmetic are equi-consistent. That means, if you
believe the one to be without contradiction, then you are obliged to accept the other also, and
vice-versa. Hilbert’s program for a proof that one, and hence both of them are consistent came to
naught with Goédel’s Theorem. According to this theorem, any formal system sufficiently rich to
include arithmetic, for example FEuclidean geometry based on Hilbert’s axioms, contains true but
unprovable theorems.
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the real number m/AQB is well defined® modulo 2.

Euclid’s Postulate: A pair of points is contained by one and only one line.

Ruler Postulate: For each line there is a 1:1 correspondence between its points and
the real numbers, in such a way that if A corresponds to the real number t4
and B corresponds to tg then

d(A,B) = |tg — t4]

Protractor Postulate: For each point @, there is a 1:1 correspondence of its rays®
and the real numbers” modulo 27, in such a way that if ray r corresponds to
the circular number w, and ray s to ws then

m/RQS = ws — w,(mod2m)
where R is a second point on r and S on s .

simSAS Postulate: If m/PQR = m/P'Q'R' and d(PQ) : d(P'Q") = d(QR) :
d(Q'R') = k then the other four angles are pairwise equal, and the remaining
side pairs have the same ratio.

One says that such triangles are similar, APQR ~ AP'Q'R' with scaling factor k.
Of course, for k =1, APQR= AP'Q'R' .

5 The SMSG Postulates

There are 22 of these,® and they combine the flavor of Hilbert and Birkhoff. With
Birkhoff, rulers and protractors are postulated, under the valid impression that chil-
dren already know how to deal with real numbers by the time they study geometry.

5To distinguish the figure ZAQB, which we call an ‘angle’, the number m/AQB is called the
angular measure of the angle. Moreover, two real numbers that differ by a multiple of 27 measure
the same angle.

6Note that once we can apply a ruler to a line, we can identify one of the two half-lines, or rays,
at a point @) as those points P on the line for which tp > tq.

“We might call these the circular numbers because they lie on the number circle, just as one
speaks of the real numbers lying on number line.

8Cf. Appendix of Wallace and West, op.cit.



There are many postulates so that proofs of interesting theorems can be constructed
without the tedium of proving hundreds of lemmas first. Of course, unlike Birkhoft’s
foursome, the SMSG postulates are redundant, in that some postulates can be log-
ically derived from others. The pedagogical wisdom and usefulness of the SMSG
axiom system is a matter of some debate among educators.

6 A Cartesian Model of Euclidean Geometry

We next give an example of an axiomatic system and a model for it. For this purpose

we choose a very familiar area of mathematics in which to interpret the primitives
and to test the truth of the axioms. We all know analytic plane geometry from high
school, also known as Cartesian geometry. Birkhoff’s four postulates for Euclidean
geometry appear compact enough for us not to lose our way.

We interpret the points A, B, C... as ordered pairs, (z,y), of real numbers. Lines shall
be solution sets to linear equations of the form az + by + ¢ = 0. A point (p,q) is
incident to the line ax 4+ by + ¢ = 0 if it satisfies the equation, i.e. if ap +bg+ ¢ =0
is true. Remember that the distance between two points and the angle measure are
also primitives and need an interpretation. We shall do that later.

With just this much we can already attempt to verify the first postulate which asserts
the existence and uniqueness of a line through two given points. You could do this
yourself by deriving the formula for the line through two points (xg, yo), (z1,y1) in any
of the many ways you learned to do this in high school. Here we do this by solving
this system of two linear equations for the as yet unknown parameters a, b, ¢ :

axg + b’yo +c =0
ary + by1 +c = 0
CL(J?l — LU()) + b(y1 — ’yo) =0
The third equation eliminates ¢ for the moment; we can recover it as soon as we know

a, b, for example thus:
c= —axy — byp.

One plausible choice for a,b would be
a = —(?Jl - 90)7 b= (331 - 1’0)
because it fits the third equation and yields

To Yo

C=ToY1 — 1Yo =
1 %
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While this shows that both points lie on some line, it does not demonstrate the
uniqueness of this line. Indeed, our interpretation is incomplete. If we really want
the first postulate to hold we must agree that the same line may have more than one
equation, provided the same set of points is the solution set for each. We therefore
amend our interpretation of a line by stressing that

a0]}+b0y+00:o
ax+biy+cp =0
define the same line provided the parameters are proportional:
aoialzboiblzCoicl.

The distance function d(A, B) Birkhoff had in mind is, of course, the Euclidean
distance as derived from the Pythagorean theorem:

For A = (x9,y0), B = (z1,%1),

d(A, B) = \/(961 —20)* + (41 — ¥0)?

We are now ready to verify Birkhoft’s ruler postulate in a particularly useful fashion.
First we give our two arbitrary points more mnemonic names: @ = (xo,%),] =
(z1,y1). Now there is a canonical way of labelling all other points on the line QI with
real numbers ¢ in several useful ways as follows:

MG

In vector notation this might be written as
P=Q1—t)+tI=Q+t(I—Q).

Notice that Py = () and P, = I, and that the points on the segment ()1 are given by
the set
{P|0 <t <1}

There is still something to prove here, namely that the Euclidean distance is in fact
measured by our ruler. Once again we were too hasty in ruling lines. For the Fuclidean
distance

d(Q.1) = /(w1 — 20)? + (1 — y0)?

7



which need not equal the parametric distance, which is 1. We may, however, rescale
our ruler by a unit u = d(Q,I), to yield another parameter, s = tu, for which
the points P, on the line are given by P, = ) + sU, where U is the unit vector,
U= (I-Q)/d(1,Q), in the direction if I from @ . This way, [ is the correct
distance, d(I,Q), away from @ on this ruler for the line.

For the remaining pair of Birkhoff’s postulates we need a protractor, i.e. a device
for measuring angles. The simplest way of doing this in our model is to recall the
definition of the dot product of two vectors and interpret:

A-Q B-Q
d(A,Q) d(B,Q)

m/AQB = arccos( ).

Birkhoff’s axiom system achieved its remarkable economy by postulating what turns
out to be the quintessential property of Euclidean geometry. What distinguishes it
from non-Euclidean geometry are the properties of geometric similarity. Two shapes
are similar if they differ only in scale. Birkhoff postulates that two triangles with a
similar corner, are wholly similar. By a corner we mean, of course, a vertex and its
adjacent edges. If the proportionality factor is 1, then this postulate says that two
triangles are congruent as soon as they have one congruent corner.

We shall verify the simSAS postulate, which makes an assertion about two triangles,
by carefully measuring one triangle. Just as today we exchange goods by means of
their price, instead of bartering items for each other, so modern geometry compares
shapes by comparing their measurements.

Given a triangle AABC vital statistics consists of six numbers, the three angles and
sides,
a=m/lA
B=m/!B
v =m/C
a=d(B,C)
b=d(C,A)
c=d(A,B).

The law of cosines, which generalizes the Pythagorean theorem to arbitrary triangles
by resolving the square of a side in terms of the opposite corner:

= a® + b* — 2abcos .

allows us to measure ¢ in terms of the measures of two sides and the included angle.



7 Problems

These problems are assigned for submission elsewhere. As you study this lesson and as
you solve these problems, enter their solutions into your Journal for future reference.

Problem 1:

Above we have given the parametric equations for a line. Recall how to eliminate
the paramater ¢ to obtain the non-parametric equation of a line you may be more
familiar with.

Problem 2:

To demonstrate that you understood our verification of Birkhoft’s Ruler Axiom, see
if you can do likewise for his Protractor Axiom. In other words, you first define the
angle measure of every angle as some circular number between 0 and 27. Recall that
was done in terms of a unit circle centered at the vertex of the angle. The angle
measure is the length of the arc between the two points the legs of the angle cross
the circle.

Next, show that parametrization of this unit circle by the cosine and sine of a real
number establishes a bijection to the circular reals of the angle from the from the
positive x-axis. There remains to prove that any angle situated at that origin is
measured by the difference of the parameters.

As you complete this non-trivial exercise, you will discover that you need to use a
well known trig identity.

Problem 3:

To finish the proof that Birkhoff’s simSAS axiom holds in Cartesian geometry, you
should first use vector algebra and the definition of the dot product to verify the law
of cosines. Hint: Multiply out

C*=(B-A)=((B-0)—(A-0C))"

Thus, knowing a,b and v, we calculate c. If a and b are stretched, or shrunk by the
same factor, so is ¢, provided v remains the same.

Problem 4:

Continuing. Thus, knowing a,b and v, we calculate ¢. If a and b are stretched, or



shrunk by the same factor, so is ¢, provided v remains the same.

Apply the law of cosines to the other two sides to calculate o and S as functions of
a,b and 7.

Problem 5:

A generalization of Euclid’s proof of the Pythagorean theorem leads to another proof
of the law of cosines. Label an arbitrary acute triangle in the standard way. Construct
squares on two of its sides, say b and c. Extending the altitudes from C' and B
partitions the squares into rectangles

b? = bby + bby

= ccy + ceo

Euclid’s argument (do it!) proves that cc; = bby

Now drop the third altitude from A. Of course (can you prove this?) it passes
through the same point where the first two altitudes intersected,” and partitions the
third square into two rectangles.

aay = bby = abcosC
2= ccp+cey
= bbg —+ aay

= (b? = bby) + (a® — aay)
= b+ a®>—2abcosC

So, we can measure the rectangle, summarize our inferences and come up with the
law of cosines.

Work your way through this argument, and supply details which you had use to
understand it, or had to look up elsewhere.

Problem 6:

Generalize the above argument to work also for an obtuse triangle. Hint: Sometimes
you need to add instead of subtract and vice-versa.

9This point is called the orthocenter of the triangle.
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