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1 Toeplitz Sequence

A Toeplitz Sequence begins by giving an increasing sequence of rational num-
bers s1 ≤ s2 ≤ s3 ≤ .... This matches up with another sequence of rationals
tn that moves in a descending order: ... ≤ t3 ≤ t2 ≤ t1. To this we add a
requirement that

(∀i, j)(si ≤ tj)

. But a gap is unwanted and can be avoided by “squeezing the numbers”.
We add a final requirement that

lim
x→∞

tn − sn = 0

.
Basically, every real number is defined by a Toeplitz sequence, namely its
decimal expansion. For example,

√
2 = 1.41459.... defines a T-sequence as

follows.
With this decimal one can take

1 < 1.4 < 1.41 < 1.414 < .... < 1.415 < 1.42 < 1.5 < 2

And every time it is the next digit in the sequence that is considered. From
the above statement, it is known that t1−s1 ≤ 1 and that t2−s2 ≤ 1

10
. From

this it is possible to conclude that tn− sn ≤ 1
10n−1 . It is also easy to see here

that every si ≤ tj.
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2 The Story of e

From there the class went to the story of e and compound interest. In
order to compute interest there must be an interest rate x, and a principal
a0. Assuming somebody’s interest is compounded yearly, the principal will
advance to a1 = a0 + xa0 = a0(1 + x) at the end of the year. The next time
around it would look like a2 = a1 + xa1 = a1(1 + x) = a0(1 + x)2. Interest
can be compounded quarterly as well. To compound quarterly throughout
the year take

a1 = a0(1 +
x

4
), a2 = a0(1 +

x

4
)2, a4 = a0(1 +

x

4
)4.

a4 represents the end of the year. In order to compound monthly take:

a1 = a0(1 +
x

12
)

And at the end of the 12 month cycle the final product will look like

a12 = a0(1 +
x

4
)12

The more something is compounded the larger the return on interest is. If
a person had a contract where interest were to be compounded every day
of the year, he or she would earn more money than a person who has had
his or her interest compounded every month. But by looking at the three
above examples of compounding interest it is easy to see that they all have
something in common. That is the expression of the form

(1 +
x

n
)n.

2.1 The special case that x = 1.

Simplifiying for now with x = 1 we next demonstrate the existence of Toeplitz
sequence

s1 ≤ s2 ≤ s3 ≤ ... ≤ t3 ≤ t2 ≤ t1

where we define

sn = (1 +
1

n
)n = (

n + 1

n
)n

and choose a suitable upper sequence tn for which we will show that tn+1−sn

is a null sequence.
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The completeness axiom of the reals as expressed in terms of Toeplitz Se-
quences then permits us to conclude that limn→∞ (1 + x

n
)n exists. We give

this famous real number the name e after Euler.
So if sn = (1 + 1

n
)n, then s1 = (1 + 1

1
)1 = 2 and s2 = (1 + 1

2
)2 = 9

4
= 2.25 and

s3 = (1 + 1
3
)3 = 2.37.

Lemma: For all n ∈ N,

(1 +
1

n
)n < (1 +

1

n + 1
)n+1.

This is worked out by realizing that 1
n

> 1
n+1

. Then when 1 is added to

each side the sum is (1 + 1
n
) > (1 + 1

n+1
). But once these are taken to their

respected powers there comes a problem.

sn = (1 +
1

n
)n > (1 +

1

n + 1
)n < (1 +

1

n + 1
)n+1 = sn+1.

Because of these opposing inequalities, we cannot conlude that the sn are
monotonically increasing, at least not yet.
The next thing to do is work with tn.

tn = (1− 1

n
)−n =

1

(1− 1
n
)n

If (1 + 1
n
) = n+1

n
is taken, the reciprocal of n+1

n
is taken to be ( n

n+1
)−1 and

the numerator adds and subtracts a 1 to cancel things out. So,

(
(n + 1)− 1

n + 1
)−1

then becomes

(1− 1

n + 1
)−1.

So,

(1 +
1

n
)n+1 = (1− 1

n + 1
)−(n+1) = tn+1.

Taking sn + 1
n
sn = tn+1 implies sn < tn+1.

Once we have actually proved the monotonicity of both sequences, we can to
find the separation of si ≤ tj. We need the monoticity of the tn to find an
upper bound here

tn+1 − sn =
1

n
sn ≤

1

n
t1 → 0

from which we conclude that limn→∞(tn+1−sn) = 0. (Recall that the product
of null and a bounded sequence is null.)
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2.2 A Geometric Inequality

2.3 Motivation

There is no good motivation. It is a truly ingenious application of one branch
of mathematics to another. This is the nature of mathematics and this course
is supposed to give you little glimpse of this every so often.

2.4 Factoring the difference of powers.

Now with a little digression into some geometric sums, recall how to prove
that that x+x2 + ...+xn = x

1−x
by multiplying both sides by (1−x). Replace

1, x by a, b and multiplying

an + an−1b + an−2b2 + an−3b3 + ... + a2bn−2 + abn−1 + bn

by (a− b), yields

an+1 + anb + an−1b2 + ...− anb− an−1b2 − ...− bn+1 = an+1 − bn+1.

Therefore,

an+1 − bn+1

a− b
= an + an−1b + an−2b2 + ... + abn−1 + bn

All we want from this identity is the two inequalities for a < b that

(n + 1)an <
an+1 − bn+1

a− b
< (n + 1)bn

We take sn and tn and rewrite them simplify doing arithmetic with them:

sn = (1 +
1

n
)n = (

n + 1

n
)n

tn = (1− 1

n
)−n = (

n− 1

n
)−n = (

n

n− 1
)n

Some examples for sn:

s2 = (
3

2
)2

s3 = (
4

3
)3
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s4 = (
5

4
)4

Some examples for tn:

t3 = (
3

2
)3

t4 = (
4

3
)4

t5 = (
5

4
)5

2.5 Apply the Geometric Inequality

Look at the Geometric Inequality above, with b = n+1
n

> a = n+2
n+1

.

(1 + 1
n
)n+1 − (1 + 1

n+1
)n+1

(1 + 1
n
)− (1 + 1

n+1
)

≤ (n + 1)(1 +
1

n
)n

Transform this lemma so that sn is integrated into it using (n+ 1)(1 + 1
n
)n =

(n + 1)sn by following the steps:

(1)
sn(1+ 1

n
)−sn+1

1
n
− 1

n+1

(2)
sn(1+ 1

n
)−sn+1

n+1−n
n(n+1)

(3)
sn(1+ 1

n
)−sn+1

1
n(n+1)

(4) (sn(1 + 1
n
)− sn+1)(n(n + 1))

(5) sn(1 + 1
n
)− sn+1 ≤ n+1

n(n+1)
sn

Watch closely, the underline portions will cancel out...

(6) sn + 1
n
sn − sn+1 ≤ 1

n
sn

(7) sn ≤ sn+1
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2.6 In summary

We have applied the Geometric Inequality to find that

1

n
(
n + 2

n + 1
)n < (

n + 1

n
)n+1 − (

n + 2

n+
)n+1 <

1

n
(
n + 1

n
)n

Rewrite the Middle and RHS in terms of the s sequence we have

sn(1 +
1

n
)− sn+1 < sn

1

n
⇒ sn < sn+1.

The Middle can also be rewritten in terms of the t sequence thus

0 < tn+1 − tn+2(1 +
1

n + 1
⇒ tn+1 < tn+2.

Note that we did use that the LHS, as well as tn+2 is positive.

2.7 Continuing with the original exposition.

Using this reasoning, how can we determine that tn+1 ≤ tn? WELL.... Dur-
ing class we first determined what a and b were.

an+1 = tn(1− 1

n
)−1 = (1− 1

n
)−1(1− 1

n
)−1 = (

n

n− 1
)n(

n

n− 1
) = (

n

n− 1
)n+1

Thus, because an+1 = ( n
n−1

)n+1, a = n
n−1

. To find b:

bn+1 = tn+1 = (1 +
1

n + 1
)−(n+1) = (

n + 1

n
)n+1

Thus, because bn+1 = (n+1
n

)n+1, b = n+1
n

.

Simply as a checker, we can set these in a relation and cross multiply by
positive numbers so as not to change the relation. We find which of the two,
a = n

n−1
or b = n+1

n
is larger.

n

n− 1
∼ n + 1

n
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Which gives us
n2 ∼ n2 − 1.

This, quite obviously shows that a is larger than b. Using the earlier lemma
again,

(n + 1)an ≤
(1 + 1

n
)n+1 − (1 + 1

n+1
)n+1

(1 + 1
n
)− (1 + 1

n+1
)

≤ (n + 1)(1 +
1

n
)n

While using

tn = (1− 1

n
)−n = (

n− 1

n
)−n = (

n

n− 1
)n

We can craftily incorporate tn in like such:

n(
n + 1

n
)(

n + 1

n
)n ≤

tn(1− 1
n
)−1 − tn+1

( n
n−1

)− (n+1
n

)
≤ (n + 1)(

n

n− 1
)n

We can eventually determine tn+1 ≤ tn.
Exercise: Write the conclusion, pulling all the parts of this proof together.

3 Limits of increasing sequences.

Let’s start the discussion by looking at

(1 +
1

n
)k →? as n→∞

Exercise: Find the limit of (1 + 1
n
)k, k ∈ R

Continue with the original problem, where k ∈ N.

1 +
1

n
→ 1

because
1

n
→ 0

then

(1 +
1

n
)2 → 12

because the product of limits is the limit of products, which itself follows
from the limiting theorem “null * null = null”
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By Induction: Assume (1 + 1
n
)k → 1 , then show (1 + 1

n
)k+1 → 1

PROOF:
(1 + 1

n
)k+1 = (1 + 1

n
)k(1 + 1

n
)→ 1× 1 (product of lims)

Proposition: Given 0 < a1 < a2 < ..., but it is bounded above

Then limn→∞ an = a ≤ k
Proof: There are two ways a positive sequence can fail to have a limit. It
can march to infinity, or it can get closer and closer to more than one number.
The limit is defined to be unique. The latter case cannot be the case for an
increasing sequence. (Can you supply an argument for this step?) And it
cannot march to infinity because we are assuming the sequence is bounded.
Note: This is not an entirely satisfactory proof, is leaves too much un sup-
ported. The correct proof is to actually find this limit, and that would be
the least upper bound of the sequence. But for such a proof, we would first
have to study the Least Upper Bound property, which is actually an axiom
for the reals. So we have to accept the intiutive proof for now.

Example: An example that is not one of the theorem above

am =

[
1 + 1

m
when m is even

k − 1
m

when m is odd

]
If k=1, then am converges to 1

If k¬ = 1, then this sequence does not converge. But it is also not an
increasing sequence, so “increasing” is a sufficient (but not necessary) reason
for a bounded sequence to converge.
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