

Python Programming in OpenGL

A Graphical Approach to Programming

Stan Blank, Ph.D.
Wayne City High School

Wayne City, Illinois
62895

October 6, 2009

Copyright 2009

 2

Table of Contents
Chapter 1 Introduction..6
Chapter 2 Needs, Expectations, and Justifications ..8

Section 2.1 What preparation do you need? ...8
Section 2.2 What hardware and software do you need?.............................8
Section 2.3 My Expectations ...9
Section 2.4 Your Expectations ..9
Section 2.5 Justifications...10
Section 2.6 Python Installation ..11

Exercises ...12
Chapter 3 Your First Python Program ..13

Section 3.1 Super-3 Numbers ...13
Section 3.2 Conclusion ...21

Exercises ...21
Chapter 4 Your First OpenGL Program..23

Section 4.1 The Interactive Python Interpreter ..23
Section 4.2 Introducing Python OpenGL...24
Section 4.3 Odds, Ends, and Terminology ..29
Section 4.4 Conclusion ...31

Exercises ...31
Chapter 5 2 Dimensional Graphics ..33

Section 5.1 Plotting Points ..33
Exercises ...37

Section 5.2 Plotting 2D Functions ...41
Exercises ...44

Sections 5.3 Parametric Equations ...50
Exercises ...53

Section 5.4 An Example from Physics ..65
Exercises ...74

Section 5.5 Polar Coordinates...80
Section 5.6 Conclusion ...89

Exercises ...90
Figures for Exercises 2-15...95

Chapter 6 Patterns and Chaos in 2 Dimensions ..99
Section 6.1 PySkel ..99
Section 6.2 Some Interesting Patterns..101

Exercises ...106
Figures for exercises 7, 8, 9, and 10..111

Section 6.3 The Chaos Game...112
Exercises ...124

Section 6.4 The Barnsley Fern...129
Exercises ...133

Section 6.5 Chaos and the Logistic Map..136
Exercises ...143

Section 6.6 Predator-prey Relationships...148
Exercises ...152

 3

Chapter 7 Strange Attractors and Beautiful Fractals154
Section 7.1 Lorenz and the Weather...154

Exercises ...162
Section 7.2 Phase Portraits and Paint Swirls ..167

Exercises ...170
Section 7.3 Mira (Look?) ...172

Exercises ...174
Section 7.4 The 3-Body Problem ..175

Exercises ...178
Section 7.5 Newton’s Method and the Complex Plane183

Exercises ...193
Addendum: ..203
Addendum II: ...203

Section 7.6 The Julia Set ...205
Exercises ...211

Section 7.7 Explorations with the Mandelbrot Set222
Exercises ...240

Chapter 8 2D Animation...246
Section 8.1 Follow the Bouncing Ball ..246

Exercises ...255
Section 8.2 A Little Gravity! ...261

Exercises ...264
Section 8.3 A Little MORE Gravity... a 2-Body Simulation265

Exercises ...279
Section 8.4 The REAL 3 Body Problem ..281

Exercises ...291
Section 8.5 From 3Body to NBody Using Arrays.....................................294

Exercises ...307
Section 8.6 Navigating the Stars ..309

Exercises ...320
Chapter 9 3D and 3D Animation ...322

Section 9.1 Rotating Objects in Space...322
Exercises ...330

Section 9.2 Real Time Interactive Computer Animator (RTICA)336
The German Bell..345
Exercises ...350
illiTorus ..353
Exercises ...359

Chapter 10 Animation and Display Lists ...370
Electron Orbitals ..370
The Quaternion Julia Set ...375
Alternate Quaternion Julia Set and Mandelbrot Set...................................381

Chapter 11 Miscellaneous Programs ..388
The Random Walk ...388
The 3D Sierpinski Sponge ...391
Rendering Teapots ..393

 4

A Midpoint Conjecture ...397
Fog ..405
PyLorenz ...409
Nate Robins and Multiview ..415

Chapter 12 VPython..421
The Sphere..421
The Bouncing Ball..421
Bouncing Ball 2..423
VPython Lorenz ...424
VPython Mandlebrot ..426

Index ...428

 5

My heartfelt thanks to Professor George K. Francis

Without his inspiration, interest, and mentoring, NONE of this would have
been possible

 6

Python Programming in OpenGL/GLUT

Chapter 1 Introduction

 Before we begin our journey with Python and OpenGL, we first need to go back
in time. History serves many purposes, but one of its more important functions is to
provide us with a reference point so that we may see how far we’ve traveled. We’ll go
back to about 1980 and the first computer programming class in our high school. We
were the proud “owners” of a single new Commodore VIC-20 and an old black and white
TV that served as a monitor (almost). There were about 5 or 6 students in the class and
we began to learn to program in BASIC.1 There were no graphics worth mentioning and
the only thing I remember is that we made such a fuss about getting the VIC to find the
prime numbers from 2 to 997. If memory serves, it took about 30 minutes for the VIC to
run this “sophisticated”2 prime finding program. We had no disk storage and the memory
in the computer was 4K.3 I think the processor speed was about 1 Mhz and might have
been much lower4, but we didn’t care because we were computing!

 The next step occurred the following year when we purchased 10 TI 99/4a
computers for $50 each.5 They were not much better than the VIC-20, but we at least
were able to store programs using cassette tape recorders. Cassette storage wasn’t
much fun, extremely slow, and unreliable. I remember some slow, crude rudimentary
graphics, but nothing that stands out in my mind. Finally, in 1982, things began to get
exciting. We were able to purchase several Apple II+ computers with disk drives. We
thought we were in heaven! The Apples were neat looking, nearly indestructible6, and
much faster than anything we had used previously. Plus, they could actually produce
usable GRAPHICS. Not just crude blocky stuff (which you could choose if you wanted…
but why?), but nice points and lines on the screen! These Apples had 64K of memory
(all you could ever use… or so we thought) and the disk storage was amazing. We
could store 140K of programs on one floppy disk!7 Our prime number generator took
only 53 seconds on the Apple, which was over 30 times faster than the VIC- 20. Had I
been acquainted with my friend George Francis at that time, we would have been able to
do even more with these dependable machines.8

 Our final conversion was to the PC platform in 1987-88. We now had a lab of 12
true-blue IBM PC’s with color monitors and hard drives running Windows 3.0 (or was it

1 BASIC is a computer language… Beginner’s All-Purpose Symbolic Instruction Code. It has
been much maligned over the years; unjustly in my opinion.
2 Here, “sophisticated” means ‘brute strength and ignorance”. But the program worked and we
were thrilled!
3 This is 4 thousand bytes of memory. Compare this to my current laptop which has 2 BILLION
(gigabytes) of memory.
4 Again, my current laptop has a processor that runs at 2 Ghz, over 2000x faster!
5 These were truly awful computers. Texas Instruments introduced them at a price of over $1000
and ended up selling them at Wal-Mart for $49.95. I’m not certain they were worth that much.
6 I personally saw one dropped on a concrete sidewalk. It bounced once or twice and worked fine
for several years afterward. No, I wasn't the one who dropped it.
7 Again, my trusty laptop has a 60 gigabyte hard drive. That’s 60 billion bytes. I also have a
portable USB "diskless" drive that holds nearly 2000x the capacity of that Apple disk!
8 UIUC Math Prof. George K. Francis had a lab of Apples then that did some amazing graphics
with a 1983 Forth compiler written by one of his colleagues. It would have been nice to have that!

 7

3.1?). By today’s standards, they were painfully slow, but at the time we thought that we
were cutting edge. Memory was now in the megabyte range and processor speed was
over 10 Mhz. I remember plotting Mandelbrot sets in less than 10 minutes, which was
relatively fast for that era. We have steadily improved to our present lab setup of PC
machines running nearly at 1 Ghz (or faster) with at least 128 mb of RAM (or more) and
dedicated video cards for graphics.9 The computers in our labs are supercomputers
compared to where we started! In fact, if we were to take the computer in front of you
back to 1980, it would have been one of the fastest on the planet!

 So this was a brief history of our high school computer lab. The programming
class curriculum followed the lab, as you might guess. We would spend 3 quarters
learning to program and then the 4th quarter was reserved for student projects.
Invariably, once graphic capabilities were available, all 4th quarter projects would involve
graphics. The first graphics on the Apple were slow and rather crude by present
standards. They were barely interactive, if at all. Even on our first PC’s it would take
several minutes to display minimal fractal images. Not so today. With the computers we
have in our lab we can create sophisticated graphics that can be manipulated in real-
time… something we didn’t even dream of back in 1980! It only took me 20 years to
realize that my students were trying to tell me something! For the past 5 years we have
concentrated on learning computer programming through computer graphics and that is
what you will be doing this year. Learning how to program is hard work, but at the same
time, it is very rewarding and can be great fun!

 So, if a picture is worth a thousand words, how much more valuable is a
changeable, interactive, creative graphics scene? You can graph mathematical
functions in 2D, 3D, and even 4D. You can create true stereo images! You can design
programs to simulate real-world events and you can manipulate the laws of physics and
create your own worlds. If you are an artist, the computer becomes your easel. If you
like games, you can program your own according to your own specifications. The
computer can become a window into your mind and your limitations are governed by
your imagination. What you can envision, you can create! Now how cool is that?

 Oh, I forgot to say that you can make a fantastic living doing this stuff… just ask
the folks at PIXAR.10

9 Previous computers used the cpu and onboard memory for graphics. This made them slow. A
dedicated graphics board handles most of the work and has its own much speedier memory.
This allows us to create some rather fancy graphics. By comparison, my laptop has 256 mb of
video memory alone… more than the system memory of many computers.
10 You know, the people who made “The Incredibles” and other such movies.

Chapter 2 Needs, Expectations, and Justifications

Section 2.1 What preparation do you need?

 In order to successfully complete this class, you will need to have some
knowledge of computer operations as a prerequisite. This class is NOT an introduction
to computers or a computer concepts class. This is a programming class and I expect
that you already know something about computers. You should already be able to use a
computer to do tasks such as word processing, gaming, and internet searches. You
should know how to install programs and you should know how to follow directions. You
don’t need to know how to program, although it’s certainly OK if you have some
programming experience.

 In terms of knowledge, you should have some familiarity with algebra and
geometry. You don’t have to be an “A” student, but you should be comfortable with the
concept of variables, equations, points, lines, angles, and coordinates in the x, y, and z
axes. Also, you should have some knowledge of physics and physical science,
particularly the equations and concepts for location, distance, velocity, and acceleration.
If you are uncomfortable at this point, take a deep breath, relax, and simply be prepared
to work a bit harder and I think you’ll be fine.

Section 2.2 What hardware and software do you need?

 If you are physically in my computer science class, then your computer and
software needs are already met by our lab computers. If you are reading this on your
own, then I should take some time to tell you what minimum hardware and software you
will need to complete the examples in the text. At a minimum, you should have a
computer with at least 128 mb of RAM and a dedicated video card with at least 32 mb of
video RAM. Most current minimum computer systems should suffice.1 If your computer
doesn’t quite meet the minimum requirements, then give the programs a try anyway.
They’ll probably run fine, albeit more slowly.

As far as software is concerned, we will be using a programming language called
Python with the PyOpenGL module.2 We will also use an open source programming
editor called DrPython, although other fine open source editors such as Scite are
available. Again, if you are in my class, these programs are already on the lab
computers. If you are studying on your own, the programs may be downloaded from the
internet at no cost.3 I use both Windows and Linux without a real preference, although it
is probably easier to use the Windows platform in terms of the necessary software

1 More is better!
2 You will need to have OpenGL and GLUT installed on your computer. Windows machines
already have OpenGL installed. You may need to search online for GLUT and install the
glut32.dll file in your system directory.
3 Use your search engine. DrPython needs another program called wxWindows, also freely
available. If you need help with the installations, seek advice from your teacher or friendly
neighborhood computer geek. These programs are “Open Source”, meaning that they are free.

 9

installation. All the program examples in this text will work on either platform as long as
the proper software is installed.4

Section 2.3 My Expectations

 My expectations are simple. I expect you to make an honest effort to learn the
material. If you feel that you are deficient in an area, then take some time and
strengthen your knowledge. I expect you to try the programs in this text, to modify the
programs, and to create some programs of your own. The exercises at the end of each
section or chapter will help achieve fluency in programming and should be attempted
with honest effort.5 If you have “bugs”6 in your program, try to find them yourself rather
than immediately asking for help. Even though I enjoy helping my students, it gets a bit
tiresome when a student insists that “the program you gave us doesn’t work” after about
10 seconds of effort. At that point, the student will sit back and expect me to fix the
problem. You’ll learn much more if you spend the time to find and repair your own
mistakes.

 I will start out by making a valiant effort to explain as much as possible in each
chapter, section, and individual program. But as we progress through the text, I plan to
explain less and less (always difficult for a teacher… I should explain less? Ask me the
time and I’ll tell you how to make a watch!) At some point you, the student, should
become self-sufficient and research for yourself various topics of interest or concepts
that you do not understand. When you reach the point where you are an independent
learner, then you have attained an elusive, but important goal. Every individual should
strive to become an independent learner and it should be the goal of every teacher to try
to help students attain this coveted plateau. Whether or not I am successful in this goal
will depend on whether or not YOU are successful in becoming a self-sufficient
programmer.

Section 2.4 Your Expectations

 You should have some realistic expectations for the class. You will most likely
NOT be recruited by Electronic Arts7 following the completion of this course. You will be
able to create some interesting interactive computer generated graphics, however. You
will also have a fairly solid background in basic programming and a platform for further
learning, either independently or formally. Since this course was started almost 30 years
ago, over 40 former students have gone on to rewarding careers in the computer
science field. So if this type of work interests you, then you may have found the start to
a great career opportunity! I am not trying to toss out clichés, but you WILL get out of
this course a level of expertise that will correlate highly with the effort you put into trying
to understand and utilize the concepts.

4 For Mac enthusiasts, as long as you have Python, PyOpenGL, and a programming editor you
should also be able to run the example programs.
5 In other words, as much as possible do your own work! If you get help from someone or
somewhere, and we all do, acknowledge the help. Claiming original work in programs or problem
solutions that are actually not your own is dishonest at best
6 You should look up the history of how programming errors came to be called “bugs”.
7 A company specializing in interactive sports games.

 10

Section 2.5 Justifications

Back in the early days of our computer science curriculum, graphics
programming was synonymous with gaming and we didn't buy those computers so that
students could play games.8 Gradually as time passed and the personal computer world
became more graphically oriented thanks to the Mac and Windows operating systems,
computer graphics became more mainstream. We began to realize that being able to
produce computer graphics meant that not only did you have to understand something
about programming, you also had to understand something about mathematics and
science if your computer graphics were to look and behave realistically. I am stubborn,
though, and it indeed took me two decades to realize that I could teach computer
programming utilizing computer graphics. My students seem to enjoy the experience
and so do I. I don't know and don't care whether or not this is acceptable practice in
other schools… it works for us.

 The choice of Python from dozens of other languages is a personal preference.
Python is a relatively simple language, but it is easily expanded through external
modules such as the PyOpenGL module. Python is object-oriented9 and is a very
popular language. Plus, Python is freely available! The downside is that program
execution is somewhat slow10, but I believe the advantages outweigh the loss of speed.
Finally, once you learn Python, it is relatively easy to go on to other languages if you
desire (and you may not... Python is a very powerful language!). See section 2.6 below
for instructions on how to obtain a copy of Python for your computer.

The choice of which graphics environment to implement was a bit easier. There
are two major graphic API’s11 available today, DirectX and OpenGL. DirectX is a
windows specific graphics API and OpenGL12 is available on all platforms. Both are free
for programmers to download and use. I personally like OpenGL13 and think it’s a bit
better at creating and displaying graphics than DirectX, but I could be wrong.

 DrPython is my current Python programming editor. It is freely available and
allows interactive access to the Python console. The only minor drawback is that
DrPython needs the wxWindows library to function properly, but that is also a free
download. DrPython is actually written in Python! However, Scite, or any other
programming IDE that supports Python (and most of them do) will suffice. If you use
another editor, the only difference you will see is that the images in the initial chapters

8 I remember that one school board member didn't think that we were ready for computers in
1980. I translated that to mean that HE wasn't ready for them. When we purchased the
computers, we were expected to compute… whatever that meant, and not "play".
9 Object-oriented programming is a mainstay of modern computer languages.
10 Python is an interpreted language (for the most part) rather than optimized and compiled like C.
This isn't all bad, because it allows us to use Python interactively from a command prompt. Look
up interpreted languages for further information.
11 Computer jargon for a set of commands specific to a particular task, such as graphics.
12 Originally created by Jim Clark and available on Silicon Graphics (SGI) workstations as GL
(graphics language). It used to be a commercial package, but was eventually made available as
Open Source software, hence OpenGL.
13 Prof. Francis was strong influence on my preference. He uses OpenGL/GLUT in his illiMath
classes.

 11

display the DrPython editor rather than the one you chose. All Python compatible
editors will have syntax highlighting. What this means is that all valid Python commands
will appear in color, as opposed to simple black on white text. This will allow you to
check to see if you’ve spelled the command correctly! The program listings in this text
are in black type, so don’t be surprised to see blue, green, or red text (depending on the
editor) in your editor window. As in the art and science of programming, the choice of a
programming IDE or editor is yours.

 There may be other modules or programs that we will use as the course
progresses. I will introduce these when the need arises.

Section 2.6 Python Installation

 If you are working in the Microsoft Windows environment, I would recommend
that you visit http://www.python.org in order to download the latest stable version of
Python.14 You will also need to visit http://pyopengl.sourceforge.net/ to download the
PyOpenGL module. In addition, if you wish to install DrPython (recommended), you
should go to http://drpython.sourceforge.net/ to download this program editor. There is
link on this website to download wxWindows if needed.

As another option for Windows environment, I would recommend that you take a
close look at the Enthought Python distribution (http://www.enthought.com). Enthought
provides a complete Python package with an enormous number of libraries available,
including the Scite programming editor at no charge for individuals and academic users.
The only drawback to the Enthought distribution is that the installation file over 200
megabytes in size, so you would need a fast internet connection to download the entire
package.

If you are working on a linux platform, check the online package repositories for

Python, DrPython and/or Scite, and the PyOpenGL library. Ubuntu linux and its apt
repositories allow for easy installation of everything you need. I would also recommend
the Python Psyco compiler for Windows and/or Linux. If you are unsure about how to
proceed, do some research online. There are many pages devoted to installing and
using Python and its multitude of libraries.

 The examples I use in this text are based on a Windows environment, but I also
have a linux system (Ubuntu Linux) on the same computer in order to make certain the
programs run properly in both environments. My current students work entirely in
Ubuntu Linux, so I make certain that the programming examples are compatible with
both operating systems. Linux has a few minor quirks (features?) in certain programs,
but there are no major problems.

 That’s enough for the preliminary information. Let’s get ready to program!

14 I used Python 2.5 and PyOpenGL 3.0.0a under Windows for these program examples. I know
that earlier versions of both packages also work properly under both Windows and Linux.

 12

Exercises

1. Go to the www.python.org website and spend some time looking at the resources
that are available there. You'll find various tutorials and answers to your Python
questions. You should bookmark this site in your browser!

2. Go the www.opengl.org website and see what OpenGL is all about.

3. Visit Professor Francis' home page www.new.math.uiuc.edu/~gfrancis and

http://new.math.uiuc.edu/ to see how he uses OpenGL in his mathematics
classes at U of I.

4. Visit http://pyopengl.sourceforge.net for the PyOpenGL home page. You'll find

documentation and the latest Python OpenGL modules here.

5. Visit http://nehe.gamedev.net for an interesting website containing information
and tutorials on programming OpenGL using various languages, including
Python. The orientation is mostly C/C++, but the Python OpenGL syntax
(language grammar) is nearly the same.

6. Visit http://vpython.org for a very nice module for Python. VPython was designed

for math and physics instruction and can be used to program the 3D Geowall.
Highly recommended!

7. Visit www.pygame.org to see how Python may be used to program games.

8. Finally, use Google or your favorite search engine and look for “OpenGL

RedBook”. The RedBook is a standard reference for OpenGL and older versions
of this fine text can be found online. You can usually download a copy and have
it available on your computer desktop for easy referral. I have not provided a link
for the RedBook because the links have a tendency to change over time. If you
can also find a copy of the OpenGL BlueBook, so much the better. The “Blue
Book” is a reference for specific OpenGL commands and it may be possible to
find an older version online.

Note: Throughout this text you will be asked to type in programs from the chapter
sections as well as create some programs of your own. A few comments are in order.
First, all program code listings in this text will be written using the Courier New
(bold) font. Second, some program lines may be placed in quotes such as “for t
in arange(0.0, 3.14, 0.01)” Do NOT type the quotes in the program unless
specifically requested to do so. Quotes are usually used only in print statements.
Finally, I suggest that you type the programs in each section of text exactly as written as
a starting point. Once the program is running properly and it is saved for future
reference, then you should feel free to experiment with the code according to the
demands of the exercises at the end of each section or according to your personal
tastes and creativity. Make certain that you save any modifications to the original code
under a NEW name so that you can preserve the original for use in future exercises.

Enjoy!

Chapter 3 Your First Python Program

Section 3.1 Super-3 Numbers

 We are going to start programming by using a numerical example. This is the
only program in this text that will not generate graphics, so please don't panic. I’m going
to use this program to illustrate some basic programming concepts and hopefully to
show you how powerful computers can be.

 Super-3 numbers are numbers that when first cubed and then multiplied by 3,
result in a value that contains three “3’s” in succession.1 For example, the first Super-3
number is 261, because when we multiply the cube of 261 by 3, we get 53338743. How
many other Super-3 numbers are there less than 1000? How about less than 10000?
Do you want to try to find these numbers by hand? I didn’t think so. Let’s see if Python
can help.

 First, start DrPython (or your programming editor). You should see a screen
similar to Figure 3.1 below.

 Figure 3.1

1 See Pickover, C. A. (1995) "Keys to Infinity", New York: Wiley p. 7

 14

 If a blinking cursor isn't visible in the white workspace area in next to the "1",
simply click in the workspace area and the cursor should then appear.

 Now type the following program exactly as it is listed below.2 Make certain that
you indent each line as shown in the program listing!

Super-3 Numbers

import string

i = input(“Please enter the upper bound: “)
for n in range(i):
 x = 3*n**3
 if string.find(str(x), “333”) <> -1:
 print n, x

End of program

Notice that DrPython automatically numbers lines for us. This feature is very
handy when we are trying to trace program errors.

Your screen should look similar to Figure 3.2:

 Figure 3.2

2 Program listings will use the Courier New font throughout the text.

 15

 Once you have typed in this short program and have checked it twice3 for
accuracy, save it to your program folder by clicking on “File” and “Save As”. In the
dialog box that appears, type “super3.py”4 for the name of the program (do not use
quotes) as shown in Figure 3.3. Click “Ok” when you have finished. Note that your
directory and the saved programs that appear will be different from mine.

 Figure 3.3

 When the program has been saved, let’s run it and see what happens! Click on
the white “Play” triangle in the menu area. You should see something similar to Figure
3.4 if your program contains no errors. Notice that there is a new area below your
program listing. This is the console area and all error messages and results of program
calculations will be found here. If everything is OK and you have a blinking cursor in the
console, you should be able to type in a value, press enter, and the program will run.
Type in 1000 and press enter. You should see the Super-3 numbers less than 1000
displayed in the console as shown in Figure 3.5.

3 OK, three times. I'm not kidding.
4 The ".py" ending (suffix) tells the Python interpreter that this program is a Python program and
should be treated as such. Failure to add the ".py" suffix will probably cause either unpredictable
results or the program will not run at all.

 16

 Figure 3.4

 Figure 3.5

 17

 Try running the program again. This time enter 10000 or 100000. What do you
see? If you want to stop a calculation at any time, press the white square “Stop” button
to the right of the green Python icon.5

If an error occurs, carefully read the message(s) displayed in the console. The
message or messages will usually give you some indication of the problem.6 Look at
Figure 3.6 for an example of an error message. Notice that Python is telling us that in
line 6, the name “rnge” is not defined. Try it! Change the spelling of range in line 6 to
rnge, save, and then run the program again. What happens? If you change the
spelling back to range, the program should work properly once more. Many program
errors are simple spelling errors and are easily remedied. We call such spelling errors
syntax errors. Computer languages such as Python require a very precise usage of
commands. Make certain that you type all commands correctly! However, don't feel too
badly when errors occur. Even the best programmers make mistakes. Just be prepared
to hunt down programming errors (bugs) and fix them!

 Figure 3.6

5 The white (or red in newer versions) stop button can be used to halt a program while it is
running. If DrPython doesn’t behave as it should or a program fails to run, check to see if this
button is “available” (white). If so, press it to stop whatever is in progress and hopefully return
everything back to normal.
6 NOTE**** Sometimes an error message will be generated and the line that is "flagged" appears
to be OK. If this is the case, look at the first unremarked line ABOVE the indicated line and see if
there is an error with that line. You may have forgotten to close a parenthesis? Also, indentation
is extremely important in Python as we will soon see. If you do NOT indent properly, your
program will either not run at all or will run in unexpected ways.

 18

Let’s go over our program word for word and see if we can understand it. I’ll type
the program lines in bold and in Courier New font for emphasis. Here's the first line:

Super-3 Numbers

 Any line beginning with a “#” sign is a remark statement. Remarks are ignored
by Python, but serve as valuable comments and reminders, particularly in long
programs. Do NOT skimp on remark statements. Use them wherever and whenever
you need to make a note to yourself (or others) about what your program is doing7, the
meaning of the variables you are using, and/or your intentions at that point in the
program. Now the next line:

import string

 "import" statements bring in new commands that you can use to extend the
Python language. They are almost always placed at the beginning of the program. The
import string command adds some neat string handling commands for our
programming pleasure. In Python, a string is any chain of letters or a mixture of letters
and numbers.8

i = input("Please enter the upper bound: ")

 When Python encounters an input() statement, it stops and waits for the user
to type something. Here, whatever the user types is stored in the variable i for later use
when the Enter key is pressed.9 The "=" sign acts as an assignment statement in this
line of code. Note that whatever you type between the " " is printed on the console
screen.

for n in range(i):

 Computers are excellent at repetitive tasks. They never get tired! A for
statement is a loop. A loop is a repetitive process a bit like a Ferris wheel… it goes
around and around as many times as we specify. In Python, the indented statements
below the for statement will be looped or iterated.10 In this case, we will loop through
those indented statements as many times as the value we entered for i. If we entered
1000 for i in the input statement, the variable n will take on ALL the values from 0 to
99911 and we’ll instruct the computer to examine every number in this range to see if it’s
a Super-3 number. How does the computer examine the numbers? Look at the next
line of Python code:

 x = 3*n**3

7 You skip using remarks at your own peril. If you program anything of any complexity and try to
figure out later what you’ve written, the program may as well have been written by someone else!
8 "Hello" is a string. 1234 is a number. "R2D2" is a string. 3.1415 is a number.
9 We can use any variable we wish as long as we don’t use a word that Python already knows.
10 The word "iteration" is synonymous with repetition or looping.
11 Those crazy computer scientists. They begin counting with 0. Go figure.

 19

 This statement takes the values we generate for n (0 to 999) and one at a time
will cube each of those values and then multiply each cubed value by 3. The n**3 is
the cubing process, so you can infer that the double asterisk (**) raises a number to a
power. The single asterisk (*) is the multiplication sign. Just as in algebra, the power is
applied first, followed by the multiplication.12 The results of the calculation 3*n**3 is
then stored in the variable x. As mentioned in the footnote, there is nothing sacred
about the use of the variable n in this program. We could just have easily used
testnumber or super3candidate13 as variables instead of x and n. Usually you choose
variables with meaningful names and if needed, use remark statements to remind
everyone how the variables are being used. For example, I might use the word endit
to store a variable associated with terminating a program or function. Anyway… at this
point, x contains the value of our calculation.

 At this point, we need to see if n, whatever it is, is a Super-3 number. How do
we do this? We know that a Super-3 number is an integer that when cubed and
multiplied by 3 results in a value with a "333" somewhere in the number. We could look
at every number visually and decide for ourselves whether or not it fits the Super-3
conditions, but that would be tedious (and silly). We'll let the computer make the
decision for us. Computers are excellent at making decisions, but we must first
formulate the decision statement properly. Look at the next line:

 if string.find(str(x), "333") <> -1:

 Decision or conditional statements usually start with if and every indented line
under the if statement is included in the conditional statement or block. Look at the
following pseudo-code example:

 if statement_true:
 do something remarkable

Generally the meaning is as follows: "if the statement is true, do something. if it’s false,
ignore me". An if block of code makes decisions! You may have been warned as a
child to "Look both ways before you cross the street!". Well, that is certainly an
important instruction, but that alone is not enough to insure our safety. Somewhere in
our brain we must have an if block of code such as:

 if car_is_approaching:
 stay on the sidewalk

Think about this! How important are such decisions in our own life? Really, computers
are nothing more than machines with the capability of looping endlessly through code,
making as many decisions as we care to write.

12 The order of arithmetic is the same in algebraic programming as in your math class. Please
Excuse My Dear Aunt Sally… parentheses, exponentiation, multiplication, division, addition,
subtraction.
13 Python distinguishes between upper and lower case variables. The variable 'Cat' is different
from the variable 'cat'. Be careful with your spelling!

 20

Now back to our super3.py program. Let’s take this if string statement apart
piece by piece. The string.find command is one of the neat string commands we
can use after the import string statement. It allows us to search strings for patterns
of letters, symbols, or numbers. In parentheses, we see str(x), which temporarily
converts the number stored in x (calculated from the previous line of code) to a string so
we can search it. “333” is the pattern we are trying to match. If a “333” pattern is
NOT found in x, the string.find command returns (or equals) –1. So, in English, this
statement says: if in str(x) we find a “333” pattern then string.find will NOT
equal –1 (“<>” means NOT equal... we could also use "!=". Try it!) and that would make
the statement TRUE (string.find is indeed NOT equal to -1). If in str(x) we
DON’T find a “333”, that means that string.find equals –1 and the statement is
FALSE.14 Remember that a FALSE statement means that we will ignore any indented
code in if block. The colon symbol “:” finishes the “if” statement.

 You may be wondering what happens if the string.find function actually does
find the search string "333"? Does the function return a value other than -1? Well,
obviously it does or our program would not work! But what value does the
string.find function return if it finds a match and why can't we use THAT value in our
if statement (if string.find(str(x), "333") == value:)? It turns out that
the string.find function does not return the same value every time the search string
is matched. The value the function returns is the location or index in the string (or
number converted to a string in this case) of the first character in the search string. For
example, the first Super-3 number is 261. This translates to a Super-3 value of
53338743. The first "3" of the "333" search string in this number is located in the "1"
location... remember that we start counting from 0 in computer science; the first number
is in position 0! So, string.find would return a value of 1 for the number 53338743.
The second Super-3 number is 462, which has a Super-3 value of 295833384. For this
value, string.find would return a 4, indicating the position or index of the first
character of the search string, again starting from 0. So we can't simply check for a
single value for string.find in the if statement to indicate that a match has been
found. We'll explore this concept further in the exercises at the end of this section.

 If the statement in the if line is TRUE, then any indented15 lines immediately
below it are executed (not shot… but implemented by the Python interpreter). The
single indented line is:

 print n, x

 This line prints both the Super-3 number n and it’s value x after cubing and
multiplying by 3 (so you can see for yourself the “333” in the number). Remember, this
line is only “executed” in the event that that if statement above it is TRUE.

14 Think about this! It is easy to become confused with conditional if statements.
15 Indented lines are crucial in Python. Most other languages ignore indents and they are used to
make code easier to read. In Python, indents are part of the language and MUST be used
appropriately. Note the indented lines after the for statement. All those lines are in the for
loop. Likewise, the indented lines immediately after the if statement are part of the if

 21

 Well, that’s all for the first program. In the next chapter we’ll being working with
graphics. First, though, we are going to try some exercises. These problems will require
you to modify the program we’ve just discussed. If you want to save your original code,
you’ll need to name your newly modified program something different. Suggestions for
names might be ch3ex1.py for Chapter 3 Exercise 1… but you are free to name the
modified programs anything you or your instructor wish.16

Section 3.2 Conclusion
 Computers are great at handling input, doing repetitive tasks, producing
calculations, making decisions, and displaying output. The simple Super-3 program we
used as an example in this chapter demonstrated the power of a computer in performing
all of these operations in just a few lines of code. How long do you think it would take
you to find all the Super-3 numbers less than 10000 by hand?

Exercises

1) Super-d numbers are a more general case of Super-3 numbers.17 With Super-d

numbers, you replace d with the number of your choice. For example, Super-4
numbers would be those numbers when raised to the 4th power and multiplied by 4,
contain “4444” somewhere in the calculated value. How would you modify the
Super-3 program to find Super-4 numbers? What is the smallest Super-4 number?

2) Are there any Super-5 numbers less than 10000? What is the smallest Super-5

number? Remember to search for “55555” in the “if” statement!

3) Can you modify the program to search for other patterns? How about the pattern

“1234”?

4) What happens if you change the formula in line 7 to something other than the Super-

d format? You won’t be searching for Super-d numbers, but perhaps you will find
something interesting? Feel free to explore a bit! Search for strange patterns! For
example, search for “314159”.

5) This is a thought question. How many Super-3 numbers are there? Could you use a

computer to find them all?

6) Rewrite the Super-3 program to check for a match using the ">" operator or the ">="

operator.

7) Add some statements to the program to print the values returned by string.find

when the function actually finds a match.

The following exercise is a bit more difficult.

16 But please don’t forget the “.py” suffix! I know, I already told you this but it’s really important.
17 http://mathworld.wolfram.com/Super-dNumber.html

 22

8) Python has other methods of looping such as the statement while. Research other
looping methods for Python and see if you can rewrite the program using a different
looping structure. Remember that indentation is important! Also, you will probably
discover that you need to be able to find a way to count or increment the value of the
variable you are using to construct Super-3 numbers. How can you do this? Do you
need to tell Python that the variable is going to store a number rather than a string?
How would you do this?

Chapter 4 Your First OpenGL Program

Section 4.1 The Interactive Python Interpreter

 Before we begin with OpenGL, I think it’s appropriate to show you a feature of
Python that we haven’t yet discussed. Start DrPython (if it isn’t already open) and press
the “green Python” button to the right of the program start icon. Your screen should look
something like Figure 4.1.

 Figure 4.1

 Note the “>>>” in the console area. This prompt tells you that you are in the
interactive Python mode. You can type Python commands at this prompt and they will
be immediately executed. For example, type 3+7 and press enter. It seems Python
knows a little arithmetic! Now type 10/5 and press enter. Of course, Python tells you
the answer is 2. Now type 10/4 and press enter. What gives? Python still answers
with 2! The reason for this behavior is that Python will perform arithmetic according to
the numbers we give it. If we supply only integers in our problem, the results of Python
arithmetic will be an integer. Try 10/4.0 or simply 10/4. and see if you get the answer

 24

you expect. As long as one of the numbers we use in the calculation is a floating point
or decimal value, then Python will respond with floating point calculations.1

 Python arithmetic may seem quirky, but once you have some programming
experience, it isn’t difficult. Just remember the integer vs. floating point format to avoid
program calculation errors. You might try multiplying, adding, subtracting, and raising
some numbers to a power to see if you get the results you expect.

 Before we close the interactive session, type print ‘hello’ and press enter.
No surprise, right? Now type name = ‘Dubbya’ and press enter. Nothing happened!
Well, actually something DID happen… what was it? Type print name, press enter
and see if you were correct. Yes, the string ‘Dubbya’ was stored in the variable name
and we can view the variable contents by using print.

The interactive mode can be useful to perform quick calculations or to check
simple program structures. Before we exit, notice in the message in the lower right
corner of the DrPython window. It should say “Running Python Interpreter”. This tells us
that we are in the interactive mode. Exit the interactive mode by clicking the red
(square) stop button and then clicking on the green monitor button to the left of the
program start icon.2

Section 4.2 Introducing Python OpenGL

 We are ready for our first Python OpenGL program. Start DrPython3 and type in
the following lines in the upper programming area, starting with line 1:

First Python OpenGL Program
ogl1.py

What do these lines do? Remember, they are remark or comment statements,
so they really don’t DO anything other than provide notes or reminders for you and
anyone else who might read your code. I can't emphasize enough the importance of
using comment statements in your code, particularly as the complexity and length of
your programs increase.

Now, save the work in your directory as you have done previously (using “File"
and "Save As”) and giving it a name such as ogl1.py. It’s a great idea to save your work
every few lines or so.4 Once you have named and saved the program the first time, you
can simply push the “diskette” button next to the printer icon to save any new code. You

1 You should look up floating point, integer, double precision, and single precision numbers.
Better yet, visit www.Python.org and search in the online documentation for Python data types.
2 The green monitor button is useful for closing the console and displaying full screen editing
mode. You must click the white stop button to stop the Python interpreter.
3 You do NOT have to use DrPython as a programming editor. There are others, such as Scite
that are free and also work well. Python comes with its own editor called Idle. You can use that.
You can even write Python code in a text processor and run the code from the command prompt
by typing: C:>\python prog.py where prog.py is the name of your saved program.
4 I once worked for nearly 6 hours on a program and the power went off. I lost everything. I
learned to save my work early and often after that.

 25

can see whether or not you need to save your work by looking at the caption bar at the
top of the DrPython window. If the words “untitled” or “[Modified]” appear, then save
your work!

 Let’s add more lines to our program:

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
import sys

 Remember that Python comes with a basic set of commands that you can
immediately use. The import statements add extra functions to this basic set of
commands. With the exception of import sys, these are import statements with a
somewhat different format than the one used in the first program (import string). In
the first program, we had to preface the “find” command with the word “string” in
order for it to use the string module commands (string.find). In this new
from... import * format, we can use OpenGL module commands directly without
having to use the OpenGL.GL, OpenGL.GLU, or OpenGL.GLUT preface in a similar
fashion as string in the Super-3 program. If we simply used import OpenGL.GL,
then every time we used an OpenGL.GL command, we would need to write (for
example): OpenGL.GL.glVertex2f(x, y). With the from... import * format,
we can simply write: glVertex2f(x, y). Much simpler, don't you think?5 The final
import sys statement provides some housekeeping tools we will need to create the
graphics display. We will usually only need a couple of commands from this module, so
we do not need to use the from... import * method here. Likewise, in the Super-3
program we only needed one string function (string.find). In contrast, we would like
ALL the OpenGL GL, GLU, and GLUT commands available to us when we program.
Having all the OpenGL commands available will save time!

 To summarize, each of the from OpenGL statements adds new commands to
Python. There are OpenGL commands (.GL), GLU commands (.GLU), and GLUT
commands (.GLUT). You will know when you are using commands from each specific
OpenGL module by looking at the first few letters of the OpenGL command. For
example, glClear() is a command from the main OpenGL (GL) module.
gluPerspective() would be from GLU and glutWireTeapot() is from GLUT. You
will see and use MANY examples of these commands (usually prefaced by gl, glu, or
GLUT) throughout this text. Let's continue:

def draw():
 glutWireTeapot(0.5)
 glFlush()

 This is new. The def keyword marks the beginning of a function block of code in
Python. Functions are segments of code that act as a group or family of commands.6

5 You may have guessed by now that the * in the from... import statement imports ALL
commands available to that particular module. Good guess!
6 See the "Odds, Ends, and Terminology" section in this chapter.

 26

The name of this function is "draw" and we can call this function from within our Python
program by using this name. Note the two indented lines after def draw():. The
indents mark these lines as belonging to this particular function.7 The def draw()
function does two things. First, it uses a GLUT command to draw a wire teapot with a
size of 0.5. Second, the glFlush() statement "flushes"8 the drawing to the screen so
we can see it. Save your work.

 Finally add these lines, making certain to line them up even with the left-hand
margin.9

glutInit(sys.argv)
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB)
glutCreateWindow("My First OGL Program")
glutDisplayFunc(draw)
glutMainLoop()

 Save your work! The first line, glutInit(sys.argv) tells Python we are
going to be displaying GLUT style graphics. GLUT stands for "GL Utilities Toolkit" and
provides cross-platform (linux-windows-mac) background calculations making the job of
doing graphics MUCH easier than if we had to write this code ourselves. In other words,
a LOT is going on "behind the scenes" here and GLUT takes care of the gory details.
The (sys.argv)10 argument allows us to enter a command line instruction if we wish
(we don't in this program). The next line, glutInitDisplayMode(GLUT_SINGLE |
GLUT_RGB), tells the graphics "wizard" that we are going to be using a single display
screen (buffer) and that we'll be using the RGB (red, green, blue) color scheme. The
vertical line between GLUT_SINGLE and GLUT_RGB means "and" and is typed using the
"shift+\" key (above "Enter" on most keyboards).

 The glutCreateWindow("My First OGL Program")
command uses GLUT to create a graphics window and places "My First OGL
Program" in the new window's caption bar. The glutDisplayFunc(draw)statement
tells GLUT where to find the function that creates the graphics scene. In this program,
the display function is def draw().11 Finally, the glutMainLoop() statement starts
the program running. This is another example of "gluttery" and keeps our program in an
eternal loop, allowing GLUT to check continually for things like mouse and keyboard
input/control.

7 A common error in Python is to forget to add a ":" after the def statement. Ditto for if
statements and for loops.
8 Yes, I know... like a toilet. Later we will learn how to avoid glFlush() by using something
called buffering.
9 Improper indentation can cause major headaches in Python. If you indent these commands,
Python will think they belong in the def draw(): function and the program will not work
properly.
10 Remember import sys?
11 We could have named it anything as long as we are consistent. We could have created a def
picasso(): function that draws the teapot and as long as we used
glutDisplayFunc(picasso), everything would be OK.

 27

 If you haven't already, run the program! You should see something that looks
similar to Figure 4.2 depending on what is in the background on your desktop:

 Figure 4.2

 Well, at least you can see something that looks like a teapot. What happened?
When we created the graphics window, we did not specify anything about the
background, so GLUT simply copied everything from the screen location into the window
and then drew the teapot on top of the whole mess. Move the window around with your
mouse (left-click on the caption bar, hold the mouse button down, and move the
window). You'll see that the background moves with the window!

 We can easily fix this by adding one line of code. Place the statement
glClear(GL_COLOR_BUFFER_BIT)12 after the def draw(): line. Remember to
indent at the same level as the other two lines in this function! Save the program and
run it again. You should now see something like Figure 4.3 on the next page. Move this
window around with the mouse and everything works as expected. Finally, we are going
to add two more lines to our first program. Click on the line that contains the
glutInitDisplayMode command. Press the "End" key on the keyboard or click at
the end of this line. Press "Enter" twice to make room for the following two lines of code.

glutInitWindowSize(250,250)
glutInitWindowPosition(100,100)

 Save your work. These lines allow us to specify the size of the graphics window
(250x250 pixels on a side) and the initial location of the window (100, 100), which is 100

12 This statement obviously clears the screen. The default color is black.

 28

pixels to the right and 100 pixels down from the screen origin.13 If you run the program,
you should see a graphics window in slightly different location.

 Figure 4.3

Here is the complete listing of our modified first program.

First Python OpenGL program
ogl1.py

from OpenGL.GLUT import *
from OpenGL.GL import *
from OpenGL.GLU import *

def draw():
 glClear(GL_COLOR_BUFFER_BIT)
 glutWireTeapot(0.5)
 glFlush()

glutInit(sys.argv)
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB)
glutInitWindowSize(250, 250)
glutInitWindowPosition(100, 100)
glutCreateWindow("My Second OGL Program")
glutDisplayFunc(draw)
glutMainLoop()

End of program

13 In computer graphics, the origin is by default in the upper left corner of the display screen and
uses positive numbers down the y-axis and across the x-axis. You can change this to Cartesian
coordinates easily in OpenGL with the origin in the center of the screen. We'll do that a bit later.

 29

Section 4.3 Odds, Ends, and Terminology

 Programming can be very frustrating. Computers (at least the ones we use now)
are not intelligent. They will do exactly what we tell them to do, but not necessarily what
we want them to do… and that's assuming that we have not made any errors in
programming syntax or grammar.

There are two major sources of errors in programming. The first concerns visible

errors in the spelling of key words, punctuation, and/or grammar. These errors are
placed in the category of "syntax" errors. The program simply won't run until all syntax
errors are corrected. Fortunately, we are often given information by our programming
editor or the Python interpreter about the nature of the syntax error and we can usually
fix these errors rather easily. If the syntax error is not found in the line of code specified
by the interpreter, it will usually be found in the line immediately preceding the "flagged"
line. Often several lines will be listed as having errors. Such a complex listing is called
a "traceback" and will include a detailed history of how, where, and in which modules the
error occurred. In such instances, look at the very last line in the list of errors. This line
will usually contain the offending code and fixing this line may repair the damage.

The second source of errors is more insidious and far more frustrating. Your

program seems to run and will not generate error messages, but you don't get the
results you expect. This may mean that the program IS running correctly, but you need
to rethink your expectations. You should remember that computers will not always do
what you want them to do, but they WILL always do what you tell them to do. Such
errors are found in the logic of your program and can be very difficult to trace. If you are
typing a program from a code listing that is known to work,14 then you have forgotten to
type something correctly. When you find and correct the error, the program will run
properly and it may be something as simple as forgetting a line of code or forgetting to
use a closing brace in a function. If you are creating your own program from "scratch" or
from the PySkel.py template we'll be using later, then you may have to look more
closely. Common problems in Python include improper usage of if conditional
statements, incorrect structure in loops, incorrect indentations in loops, functions, and if
statements, and improper usage of OpenGL commands. Fixing these errors may involve
rethinking the problem. Often, using a print statement to display the values of
variables at appropriate times will help immensely. The best weapons against
programming errors of any kind are patience, clear thinking, and experience!15

Terminology is important in any field, not just in computer science. Sometimes

fields (such as education!) are unnecessarily burdened with terminology, but for the most
part, a properly defined vocabulary unique to a subject area is the most efficient way to
teach, learn, and communicate with others in that discipline. Much of the terminology in
computer science has become mainstream since the proliferation of computers into
nearly every home. There are some vocabulary terms that we need to define, though, to
avoid confusion in this course. Teachers tend to repeat themselves (more often as we
age…), so I may define some of these terms again (and again) throughout the text. If
so, simply nod your head and remember the word(s) and meaning(s)!

14 Hopefully ALL programs in this text fall under this category!
15 These are outstanding attributes to have in ANY walk of life.

 30

First, we need to discuss the distinction between functions in computer science
and functions in mathematics. In computer science, sections of code that are "set aside"
to perform a specific task are called functions (or archaically, subroutines). A function is
a code segment that is designed to calculate a value and "return" that value to the main
program. Buttons such as sin() or tan() on a calculator are an example of a function. In
Python, we might have something like this:

def sqr(x):
 n = x*x
 return n

print sqr(5)

End Program Listing

 This small piece of code will actually run!16 We define a function sqr using def
sqr(x):. This function takes an argument (a number we send it through code) and
stores it in the variable x, which is then used in the function by the line n = x*x. The
return n command does exactly that: it returns the value of n to the program. In this
example, we have defined a squaring function and all we have to do to use this new
function is to issue a sqr(j) command, where j is a number we want to square. So, a
function in Python returns a value. A function can also be a code segment that is
designed to perform a task, but it does not necessarily perform a calculation (again,
archaically called a subroutine). The def draw(): function in the program in this
chapter is such an example. In modern terminology, all blocks of code that are set aside
to perform a task are called functions.

 Functions in mathematics are analogous to functions in programming. A function
in mathematics is an operation, action, or process that converts one or more numbers
into another (probably different) number.17 The key to a mathematical function is that
when we supply a number or numbers as input, we will get only one unique output.18
You might think that this definition is restrictive and that we will be unable to produce
plots of 2D curves such as circles (which fail the vertical line test) and 3D objects such
as spheres (ditto). The short answer is that we won’t use a single function for these
objects. We will use combinations of equations in parametric or polar form to produce
any plot we choose.

Another important term is the concept of iteration. Iteration is the process of

repeating the same calculation(s) a specified or perhaps indeterminate number of times
using a loop structure. Usually the repeated calculations are performed on a
mathematical function or set of functions. One key to iteration is that the result of the
previous computation is used as the input for the next computation. This is analogous to
starting with a value and repeatedly pressing the "sqrt()" or "sin()" button on a calculator.

16 Use "File|Save As" and name the program something like "sqr.py".
17 Devaney, Robert L. (1990). "Chaos, Fractals, and Dynamics: Computer Experiments in
Mathematics." Addison-Wesley Publishing Co.
18 Hence the vertical line test used on graphs in algebra.

 31

You may encounter these and other terms again as we journey through this text.
If it sounds as if I’m defining for the first time a previously defined term or phrase, simply
bear with me. The more times you read a term and perform a task, the more likely you
are to remember the term and learn the task. Also, I’m a teacher (and I’m old) and I tend
to repeat things repeat things.

Section 4.4 Conclusion

 In this chapter we introduced both the Python interactive interpreter and our first
OpenGL based program. We also briefly discussed programming errors. Always
remember that you MUST be careful when programming. As I stated earlier, a Python
program, or any program in any language, will not always do what you want it to do, but
it WILL always do what you TELL it to do. Pay strict attention to both syntax errors and
logical errors! Be prepared to exercise patience and thought when attempting to fix
programs that are not running correctly or perhaps not running at all!

 We also introduced some terminology that we'll be using throughout the text.
This terminology should not be considered final or complete. We will probably add to
your vocabulary as we progress in knowledge and no doubt many of the terms will be
visited more than once!

 The following exercises are designed to allow you to explore the code in our first
OpenGL program. You probably want to keep your original program intact, so open it
again (if it isn't open) and use "File" and "Save As" to save it under a new name (ending
in ".py"). You can then experiment with the new program. Also, you'll notice that most
programming editors such as DrPython can have several programs loaded at once.
Under the menu labels or icons, you should see a tab or tabs which contain the names
of the program or programs currently open. You can click on any of the tabs to make
that particular program active and ready to edit/run.

Exercises

1) Change the caption to display your name instead of "My First OGL
Program".

2) Change the initial window location to something other than (100, 100). Can you

predict where the window will appear based on the ordered pair of numbers?

3) Change the initial window size to (400, 400). Try various values and see what
happens. The numbers do not have to be equal, although you should probably
try to avoid negative numbers and/or zero. Try a tall narrow window or a short
wide display. Which number controls the width and which the height?

4) Change the size of the teapot from (0.5) to larger and smaller values. What

happens?

5) Comment the glutWireTeapot command to disable it (How?). Create a blank
line below it and add this line: glutWireSphere(0.5, 10, 10)

 32

a) Change the 0.5 to 0.75 and see what happens. What does this value do?
b) Change the line to: glutWireSphere(0.75, 25, 25)
c) What do the last two values do?
d) Change the line to: glutWireCube(1.0)
e) Change the line to: glutWireTetrahedron()
f) Change the word Wire to Solid in each of the commands above.

 There are additional GLUT geometric shapes that we’ll explore later.

6) Research “iteration”. How is it used in computer science? Are there particular
problems that can be more easily solved by iteration than by other means? Also
research “recursion”. Are iteration and recursion the same? If not, how are they
different?

7) Research “function” and “subroutine”. Compare the definitions you find with the

definitions given in this text.

8) You’ll need a calculator for the next few exercises. Type in a number larger than

1 (such as 5). Repeatedly press the sqrt() button. Do you eventually reach a
value that doesn’t change? What is this value? Do you think this is correct? Try
another value > 1 and see if you get the same result.

9) Now type in a positive19 value less than 1. Repeatedly press the sqrt() button.

Do you eventually reach a value that doesn’t change? What is this value?
Again, do you think this is correct? Try another positive value less than 1 and
see if you get the same result.

10) Type in another value and repeatedly press the cos() button. Do you eventually

reach a value that doesn’t change? What is this value? This value is the
solution to what function? Try another number and see if you get the same
result.

11) Try the sin() and tan() buttons in the same manner. Do you get the same

results? Why or why not?

12) Try running the program from this chapter again, but this time, use (.5) instead of

(0.5) for the size of the teapot. What happens? Do we need to include the
leading zero to the left of the decimal? Some languages require a leading zero in
front of decimal values between -1.0 and 1.0.

19 Why a positive value?

Chapter 5 2 Dimensional Graphics

 When you stop and think about it, all computer graphics are 2 dimensional.1 We
can create the illusion of 3D (and beyond) by the proper placement of pixels, objects,
and the use of visual cues to “trick” your mind into seeing depth, but essentially we are
still plotting points on a 2D screen. With this concept in mind, it makes sense to start
with “true” 2D graphics and we’ll begin by plotting points.

Section 5.1 Plotting Points

 One of the basic functions of any graphics language is to manipulate individual
points or pixels within the graphics window. We need to have complete control over
where the points are plotted, the point size, and the point color. If we can control the
plotting and characteristics2 of individual points, then there is nothing we can’t draw!

 Our first program in this chapter will be a simple exercise in setting up the
graphics window so that it behaves much like the coordinate system you learned in
algebra class. As stated in an earlier chapter, the origin in a graphics window is usually
in the upper left hand corner. We would like to move the origin to the center of the
graphics display window. Once we have established the origin, it should be simple to
plot points where we please.

 Start DrPython or your Python editor and enter the following program. Make
certain that you save the program in your directory with a “.py” suffix or ending. I’ll
suggest a name for each program in the first remark3 statement, but feel free to choose
your own name if you wish. Remember to pay strict attention to indenting!

PyPoints.py
Setting a coordinate system with central origin

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
import sys

def init():
 glClearColor(0.0, 0.0, 0.0, 1.0)
 gluOrtho2D(-1.0, 1.0, -1.0, 1.0)

def plotpoints():
 glClear(GL_COLOR_BUFFER_BIT)
 glColor3f(1.0, 0.0, 0.0)

 glBegin(GL_POINTS)
 glVertex2f(0.0, 0.0)

1 Unless you have a holographic display? Do you? Guess what I want for Christmas?
2 Sometimes called attributes
3 Since I am explaining the first programs in great detail, I’ll keep remark statements out of the
program listing at this point in the text in order to avoid clutter.

 34

 glEnd()

 glFlush()

def main():
 glutInit(sys.argv)
 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB)
 glutInitWindowSize(500,500)
 glutInitWindowPosition(50,50)
 glutCreateWindow(“Plot Points”)
 glutDisplayFunc(plotpoints)

 init()
 glutMainLoop()

main()

End of Program

 When you run the program, assuming you have no errors, you should see a
graphics window with a single tiny red dot in the center (at the origin!). Not very exciting
(yet), but it’s an important “point”.4

 Let’s look at the listing in detail. The first few lines we’ve seen:

PyPoints.py
Setting a coordinate system with central origin

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
import sys

 As explained previously, the lines following the remark statements add OpenGL
commands to Python for our use. Now let’s explore the program listing.

def init():
 glClearColor(0.0, 0.0, 0.0, 1.0)
 gluOrtho2D(-1.0, 1.0, -1.0, 1.0)

 The first program section is an initialization function.5 We set the background
color to black using the glClearColor command. This command does not DO
anything other than inform OpenGL that when we clear the graphics screen, we are
going to use “black” as our background color.6 The numbers in the parentheses
following this command dictate the color and they are, respectively, (red, green,
blue, alpha). Each color position accepts a value from 0.0 to 1.0 inclusive. You can

4 Pun intended.
5 It makes sense to choose variable and function names that describe their purpose. This is a
function that sets some initial values, hence the name init().
6 glClearColor sets the GL_COLOR_BUFFER_BIT to the color of your choosing.

 35

mix and match colors if you wish and use various intensities.7 The “alpha” setting deals
with the opacity or transparency of the colors. It isn’t used as much as the RGB (red,
green, and blue) color values and is generally set at 1.0. For example, a purple or
magenta background color would be: glClearColor(1.0, 0.0, 1.0, 1.0). Note
that the mixture of red (1.0) and blue (1.0) will result in a purple/magenta background
color.8 The absence of color (all RGB settings excluding alpha at 0.0) results in black.
Setting 1.0 for each color will provide a white background.

 The gluOrtho2D command allows us to set the coordinate system ranges. The
command is used this way:

 gluOrtho2D(x-left, x-right, y-bottom, y-top)

In this particular instance, we are setting a coordinate system that ranges from -1.0 to
1.0 in both the x and y axes which places the origin (0,0) in the center of the screen.

 Let’s look at the plotpoints() function:

def plotpoints():
 glClear(GL_COLOR_BUFFER_BIT)
 glColor3f(1.0, 0.0, 0.0)

 The plotpoints() function contains the drawing procedure. Again, the exact
function name, plotpoints(), is not crucial, but should be descriptive of the function’s
behavior (if possible). The glClear(GL_COLOR_BUFFER_BIT) command does what
you think it should do. It clears the screen (the color buffer bit) and sets the background
color to the choice you made in the init() function. The next line,
glColor3f(1.0, 0.0, 0.0), sets the plotting color to red. The “3f” in the
glColor3f command reminds us that we need to use 3 floating point (decimal between
0.0 and 1.0 inclusive) values for the RGB settings.9 Placing a 1.0 in the red position and
0.0 in the green and blue positions insures that we will be drawing or plotting using pure
red. The glColor3f command MUST be placed before the plotting or drawing
command in order for it to work properly. Take special care that you do not confuse the
two OpenGL color commands. glClearColor is designed specifically to set the
background color of the graphics window after it has been cleared. glColor3f and
glColor3ub are designed to set the color of the plotting pen.

 The actual plotting of points occurs in the next program section.

 glBegin(GL_POINTS)
 glVertex2f(0.0, 0.0)
 glEnd()

 glFlush()

7 Example: glClearColor(0.5, 0.8, 0.3, 1.0) for an interesting shade of green.
8 Try it! If the color is too intense, try 0.7 for both red and blue values.
9 There are other possibilities such as: glColor3ub(red, green, blue) where “ub” stands
for “unsigned byte”. In this case, the color values range from 0-255.

 36

 When we draw or plot in OpenGL, we must inform the graphics system of our
intentions. The glBegin(GL_POINTS) command serves this purpose. It basically
says that we are ready to begin drawing and that we are going to plot points.10
glVertex2f(0.0, 0.0) locates the single point (red, remember?) on the screen
using the coordinates (0.0, 0.0), which should represent the origin at the screen’s center.
The 2f portion of the glVertex2f(0.0, 0.0) command indicates that we are going
to use 2 floating point values with glVertex, the first to represent the x coordinate and
the second to represent the y coordinate.11 When we are done plotting, we “pick up our
pen” by issuing a glEnd() command. Finally, we “flush” our drawing to the screen with
glFlush().12

 In this and subsequent programs we will use a def main(): function to initiate
OpenGL and call any setup routines (such as init()) needed by our program.
Technically, a separate main() function is not required by Python, but the OpenGL
tradition is based on the C programming language, which requires a main() function.
We’ll keep with tradition.

def main():
 glutInit(sys.argv)
 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB)
 glutInitWindowSize(500,500)
 glutInitWindowPosition(50,50)
 glutCreateWindow(“Plot Points”)
 glutDisplayFunc(plotpoints)

 init()
 glutMainLoop()

main()

 We have seen most of these lines in our first OpenGL program. Note that the
graphics window size in glutInitWindowSize was set to provide a square drawing
surface 600 pixels on a side. The plotpoints display function must be properly
named and spelled in the glutDisplayFunc command.13 We “call” the init()
function to set everything up and then put OpenGL/GLUT into an eternal loop to run the
program. The final command, main(), calls the main() function. Without this final
command, the program will not run. Try it! Put a # in front of main() and then run the
program.

 Now it's time to explore this program further in the exercises!

10 GL_POINTS specifies point plotting. We can draw lines by using GL_LINES and triangles by
GL_TRIANGLES. There are other possibilities for glBegin that we will research later.
11 An ordered pair, just like in algebra!
12 To this point, the drawing exists only in the computer’s memory. We must transfer the drawing
from memory to the screen. I’m not certain where “flush” originated in this usage… but we “flush”
the memory to the screen using glFlush().
13 Proper spelling includes making certain that you pay attention to upper and lower case letters!
“plotpoints” is NOT the same as “plotpoints”.

 37

Exercises

 To avoid overwriting previous exercises, remember to save each new problem as
a different program name (such as ch5ex1.py)

1) Experiment with the background color settings in glClearColor. See if you
can find both a pleasing and a putrid color. You might want to jot down the
settings in your notes or journal for later reference.

2) Change the color of the pixel(s) in the glColor3f statement. Try plotting a

white pixel using (1.0, 1.0, 1.0). Remember to place this command above the
glVertex2f command or it will not work properly!

3) Add the line glPointSize(2.0) directly above the glBegin(GL_POINTS)

using the same indentation level and see what happens.14 Experiment with this
command by increasing and decreasing the number in parentheses.

4) Plot several points in several sizes and colors. You may insert as many

glVertex2f command as you need between the glBegin(GL_POINTS) and
glEnd() commands. What happens if you plot a point that is beyond the x and
y axis ranges set in the gluOrtho2D command? Try it!

5) Change the gluOrtho2D command so that the x and y axis ranges are from -

10.0 to +10.0. Plot some points in those ranges. Can you predict where the
points will appear before you run the program?

6) Experiment: Comment out15 the glPointSize(2.0) command introduced in

exercise 3. Change the glBegin(GL_POINTS) to glBegin(GL_LINES) and
plot two different points. What happens? See if you can draw a triangle.
Uncomment the glPointSize line. Does anything change? Comment this line
again.

7) Experiment: Replace GL_LINES with GL_LINE_STRIP and plot the points (0.0,

0.0), (1.0, 1.0), and (-1.0, 1.0). What happens? Now try GL_LINE_LOOP with
the same three points. Was the result the same?

8) Place the command glLineWidth(3.0) just below the commented

glPointSize(2.0) command. Run the program using any of the GL_LINES,
GL_LINE_STRIP, or GL_LINE_LOOP commands.

9) Experiment: Try to draw an equilateral triangle using three different colors, one

for each side.

10) Experiment: Try to draw a set of coordinate x and y axes using GL_LINES.

14 To insert a blank line, you can place the cursor at the end of the line prior to glBegin and
press Enter. You can also place the cursor at the beginning of glBegin and press Enter.
15 Using a # at the beginning of a line is a great way to temporarily disable a command.

 38

11) Using the coordinate axes from Exercise 10 as a reference, see if you can plot

“mirror” image points simply by changing the signs of your ordered pairs. Here is
an example def plotpoints(): function that can serve as a model. Note the
use of variables to “store” the value of the ordered pairs. Make certain that you
set a background color other than black. Why and where would you do this?

 def plotpoints():
 glClear(GL_COLOR_BUFFER_BIT)

 # First draw x and y axes
 # Using black as a color
 glColor3f(0.0, 0.0, 0.0)
 glBegin(GL_LINES)
 glVertex2f(-1.0, 0.0)
 glVertex2f(1.0,0.0)
 glVertex2f(0.0, 1.0)
 glVertex2f(0.0, -1.0)
 glEnd()

 # Store an ordered pair in variables
 x = 0.5
 y = 0.5

 # Plot points in bright red
 glColor3f(1.0, 0.0, 0.0)

 # Increase the point size
 glPointSize(3.0)
 glBegin(GL_POINTS)

 # Plot the point
 glVertex2f(x, y)

 # Plot the mirror image or reflection of the point
 # in the x axis. Note the sign change!
 glVertex2f(x, -y)

 glEnd()
 glFlush()

 # End of plotFunc()

 Figure 5.1 illustrates the simple symmetry from the above code. Note how the
points at (0.5, 0.5) and (0.5, -0.5) are reflections of each other across the x axis.

 39

 Figure 5.1

 Can you reflect across the y axis? How would the signs in the ordered pairs
change for a y axis reflection? Can you find a way to reflect across the y = x
diagonal line? You can add a y = x diagonal by adding the following lines of code
within the glBegin(GL_LINES) section in def plotpoints():

 glVertex2f(-1.0,-1.0)
 glVertex2f(1.0, 1.0)

 Here is an example of a symmetry or reflection across the y = x diagonal.

 Figure 5.2

Can you reproduce Figure 5.2 yourself?

 40

Now for the challenge. How many other symmetries or mirror images can you
create using this idea? Try to predict the outcome before you run the program.
Symmetry is an interesting and valuable concept in math, science, and computer
graphics.

12) Expand the concept of point symmetry and see if you can produce a plot illustrating
the reflection of a triangle (using GL_LINES) across the x axis. If you are
successful, try the y axis as well. Finally, for a challenge, reflect the triangle across
the y = x axis.

13) Create something on your own by plotting various lines and points in different sizes

and colors. You may actually create a work of art! Make certain that you THINK
about and PREDICT the results before you run the program. This is a scientific
method. You establish a thoughtful (theory) prediction (hypothesis) and you test the
prediction by running the program (experiment). If the program doesn't behave as
you expect, then your hypothesis was incorrect and you think about the problem
some more. Eventually, through thought, prediction, and testing, your program will
work (probably).

Note: You may have realized this by now, but the most common errors in programming
(thus far) involve spelling, capitalization, forgetting to close parentheses. If you generate
an error in your program and you can't figure out where the error is in the program
statement, look at the line(s) ABOVE the error. It may be that you have forgotten a
closing parenthesis somewhere in the line or lines preceding the error.

Section 5.2 Plotting 2D Functions

 Let's make Python and OpenGL do something a bit more useful. One of the
tasks that most algebra students dislike is graphing functions.1 With some minor
modifications, we can use the program in the last section to create our own function
plotter. We'll start with this code:

PyFunc.py
Plotting functions

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from numpy import *
import sys

def init():
 glClearColor(1.0, 1.0, 1.0, 1.0)
 gluOrtho2D(-5.0, 5.0, -5.0, 5.0)

def plotfunc():
 glClear(GL_COLOR_BUFFER_BIT)
 glColor3f(0.0, 0.0, 0.0)
 glPointSize(3.0)

 for x in arange(-5.0, 5.0, 0.1):
 y = x*x
 glBegin(GL_POINTS)
 glVertex2f(x, y)
 glEnd()
 glFlush()

def main():
 glutInit(sys.argv)
 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB)
 glutInitWindowPosition(50,50)
 glutInitWindowSize(400,400)
 glutCreateWindow("Function Plotter")
 glutDisplayFunc(plotfunc)

 init()
 glutMainLoop()

main()

End of program

1 I didn't like it either! I wish I had Python and OpenGL… or even a computer, "way back then".

 42

 Save your program and try running it. You should see something like Figure 5.3.
We are obviously trying to plot a parabola, but how is our program managing such a
feat? First, you should notice that we've added a "from numpy import *" to our
import statements.2 This command adds some additional important math statements to
Python for our use, as we'll see in a moment. In our program listing, we've changed the
gluOrtho2D command so that the x and y ranges are from -5.0 to +5.0 to enlarge the
domain and range of the "canvas" on which we are plotting. You may change these
values as needed for specific plots.3 For example, we may need a range of -50.0 to 50.0
to see large scale details in a function or we may need a range of -0.25 to 0.25 to view
intricate details of a complex graph near the origin. gluOrtho2D allows us to employ
such domain and range options with great flexibility!

 Figure 5.3

The major changes in this program are in the display function plotfunc(). The
background color is white, the plot color is set to black (where and how?), and the size of
the points has been increased to 3.0 (what line does this?). The "meat" of the program
is found in the following section:

 for x in arange(-5.0, 5.0, 0.1):
 y = x*x

 glBegin(GL_POINTS)
 glVertex2f(x, y)
 glEnd()

 After glBegin(GL_POINTS), we see a for loop similar to the one used in the
“Super-3” program. Instead of using range, though, we use arange which allows us
some freedom to choose how our x axis values are chosen. The range command we
used previously works only with a list of integers. We need to be able to use decimal
numbers in order to create smoother plots. Remember the from numpy import *
statement? That particular module provides us with the arange command used in this
section of code. The for x in arange(-5.0, 5.0, 0.1): statement translates to

2 The newest Python Numeric module is called numpy, so from numpy import * may be
necessary instead of Numeric. In either case, you may have to install the library before you can
run this program.
3 Several exercises will require changes in the domain and range in gluOrtho2D

 43

“let x take on all values from -5.0 to +5.0, stepping by 0.1”.4 The next line, y = x*x
takes each value for x in the specified range, squares that value, and stores the result in
the variable y.5 As expected, the glVertex2f(x,y) command plots both the x and y
points for us.6 As in the previous program, we close glBegin() with glEnd() and
glFlush() causes the graphics (heretofore stored only in the computer's memory) to
be “flushed” to the screen. The def main() function containing the GLUT statements
is very similar to those in the program in the previous chapter.

 Before we do some exercises based on this program example, let's add some
coordinate axes for visual reference.7 Directly below the glPointSize(3.0)
command, add the following lines:

 glBegin(GL_LINES)
 glVertex2f(-5.0, 0.0)
 glVertex2f(5.0, 0.0)
 glVertex2f(0.0, 5.0)
 glVertex2f(0.0, -5.0)
 glEnd()

 Now when the program is executed, we see the graph of the function y = x2 in a
more familiar setting as shown in Figure 5.4.

 Figure 5.4

The GL_LINES parameter in the new glBegin() statement takes pairs of points
in glVertex2f(x,y) format and draws a straight line between those points. In this
example, the x-axis is drawn first from glVertex2f(-5.0,0.0) to
glVertex2f(5.0,0.0) and the y-axis is drawn from glVertex2f(0.0,5.0) to
glVertex2f(0.0,-5.0). You might try plotting the function using a different color for
contrast.

4 Actually, both the range and arange commands stop one step less than the higher number.
In this case, 4.9 is the last value for x. You might try replacing the "0.1" step with "0.01"?
5 You could also type “y = x**2”. Recall how we cubed a number in the “Super-3” program?
6 Remember that all indented lines after the for statement are included in the loop.
7 As in Exercise 10 in the previous section.

 44

 Here are some comments on representing functions using computer statements.
If we want to graph the function f(x) = 2x3 - 3x2 + x - 5, we simply can't type the equation
into Python as it appears in our textbook. We must translate the function into a form that
is understood by Python. Unless you are using a computer algebra system such as
Mathematica, all such equations require translation regardless of the computer language
you are using. In this case, we translate f(x) = 2x3 - 3x2 + x - 5 as follows:

 y = 2*x**3 - 3*x**2 + x - 5

 This isn't too difficult. Notice that we must specifically tell Python to multiply and
raise x to a power. We can't type 2x and expect Python to understand that this means
"2 times x". In Python, 2x is written 2*x. As long as you keep in mind that every
operation must be specifically typed and that the order of arithmetic must be strictly
obeyed, then you shouldn't have too many problems.

One final note: In Python (or in most languages), the "=" sign has a couple of
meanings. First, the "=" sign may act as an assignment statement. The equation x =
x + 1 has a nonsensical meaning in algebra. How can x equal itself plus one? In
Python, this statement is translated: Add one to x and then assign, store, or place the
new value back into x. In other words, the new value of x will be the old value of x plus
one. This creates a counting device! So, anytime Python encounters an "=" sign, it will
evaluate the right hand side of the "=" sign first and then assign that value to the variable
on the left side of the "=" sign. The second use of an "=" sign is in comparisons such as
an if statement. In this usage, we employ a "==" sign to distinguish it from a simple
assignment statement. As an example, we might say: if x == 3: meaning that if x
equals 3, then we'll do something important.8 If you forget and use "=" in an if
statement rather than "==", the Python interpreter will generate an error message.

Exercises

1) Graph the following equations. Don't forget to translate the equations into Python!

a) y = x2 - 2
b) y = x3 - 3x - 1
c) y = x4 - 5x3 + x2 - 3x - 1
d) y = sin(x)
e) y = sin(3x)
f) y = sin(x/3)
g) y = cos(x)

2) How would you identify the roots (if they exist) of the functions in Exercise 1?

3) Experiment with the glPointSize() statement. Does this statement apply only to

the points plotted or does it apply to the x and y axis lines as well?

8 The idea of exact equality introduces the possibility of some interesting side-effects. Floating
point values are represented by binary numbers (base 2) internally, so if we pose the conditional
if x == 2:, which is an integer with an exact binary representation and then check to see if
x == 2.0:, which is a floating point value with a (perhaps) inexact representation, we may not
get the expected result. This is only an example, but please keep this idea in mind for later use.

 45

4) Replace GL_POINTS with GL_LINES in the glBegin() statement above the
function plot section of the program. What happens? Why does this happen? What
about glPointSize() mentioned in exercise 2?

5) Replace GL_LINES with GL_LINE_STRIP in exercise 3. What happens?

6) Experiment with GL_LINES and glLineWidth(2.0) in place of glPointSize().9

Try various line widths, including decimal values.

7) Change GL_LINES back to GL_POINTS. Experiment with the arange command.

Change the arange(-5.0, 5.0, 0.1) to a arange(-10.0, 10.0, 0.01).
You may have to edit the gluOrtho2D command in the init() function for this
change to display properly. Now try a step (in arange) of 0.001 followed by a step
of 0.0001. The smaller the step, the nicer the plot… but it can take a bit longer to
draw because you are plotting more points. You can also modify the step size while
using GL_LINES for a smoother or coarser solid curve.

8) See if you can plot multiple functions in the same graphics window. You might

consider something like this in def plotfunc():

 for x in arange(-5.0 ,5.0, 0.01):
 y = x*x
 a = x + 1

 glBegin(GL_POINTS)
 glVertex2f(x, y)
 glVertex2f(x, a)
 glEnd()

 which should give you a result something like Figure 5.5. Try some other functions
and see where points of intersection occur.

 Figure 5.5

9 Remember, glLineWidth only works with lines. glPointSize works only with points!

 46

9) Plot y = sin(x) and y = cos(x) on the same graph. Use different colors for
 each function and also include coordinate axes for reference. What do you notice
 about the two function plots? How are sin and cos related? How are they
 different?

10) Building on Exercise 8, can you draw a circle? The equation for a circle is:

 x2 + y2 = r2 or y = sqrt(r*r – x*x) or y = sqrt(r**2 – x**2)

 You can't enter the traditional implicit equation for a circle as shown in the first
equation above. You MUST use the second or third explicit form, y = sqrt(r*r –
x*x) or y = sqrt(r**2 – x**2). But how would you go about
accomplishing the feat of drawing a complete circle? A circle is NOT a function
according to the vertical line graph test in algebra. Think about this and find a
solution. Hint:

r = 1.0
 for x in arange(-1.0, 1.0, 0.01):
 y = sqrt(r**2 – x**2)

 glBegin(GL_POINTS)
 glVertex2f(x, y)
 # do we need another glVertex2f statement here?
 glEnd()

Notice that I've added an r = 1.0 statement above the glBegin. Why?
Also notice that I've changed the for loop from:

 for x in arange(-5.0, 5.0, 0.01):

to:

 for x in arange(-1.0, 1.0, 0.01):

 Again, why? Try the original for loop and see if you can figure out the error.

11) At some point in algebra we find ourselves graphing inequalities such as y < x2.
 How could we do this using Python? First, plot the graph of y = x2. Use
 glPointSize(1.0) and a for loop such as:

 for x in arange(-5.0, 5.0, 0.01):

 Next, modify the plotfunc display function as follows:

 def plotfunc():
 glClear(GL_COLOR_BUFFER_BIT)
 glColor3f(0.0, 0.0, 0.0)
 glPointSize(1.0)

 for x in arange(-5.0, 5.0, 0.01):
 y = x*x

 47

 glColor3f(0.0, 0.0, 0.0)
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 for a in arange(-5.0, 5.0, 0.01):
 if a < x*x:
 glColor3f(0.50,0.50,0.50)
 glBegin(GL_POINTS)
 glVertex2f(x,a)
 glEnd()

 glColor3f(0.0, 0.0, 0.0)
 glBegin(GL_LINES)
 glVertex2f(-5.0, 0.0)
 glVertex2f(5.0, 0.0)
 glVertex2f(0.0, 5.0)
 glVertex2f(0.0, -5.0)
 glEnd()

 glFlush()

End of plotfunc block

You should also change gluOrtho2D as follows if you haven't done so already:

 gluOrtho2D(-5.0, 5.0, -5.0, 5.0)

The shaded region of the inequality is visible in Figure 5.6

 Figure 5.6

 48

 Notice the outline of the original y = x2 function is still visible. Also notice the
addition of a nested loop containing the variable a.10 It is this nested loop that is creating
the shaded region. Can you shade the area above the parabola? Try it! Now here's the
challenge. Using this idea, see if you can revisit exercise 8 and Figure 5.5 and shade
the region bounded by the line, the parabola, and the constraint that both x and y must
be greater than 0. The solution should look like Figure 5.8. Here is a hint: The line if
a < x*x and x > 0 and a > 0: when properly used will produce a plot that looks
like Figure 5.7. See if you can build on this concept and reproduce Figure 5.8.

 Figure 5.7

 Figure 5.8

10 Think of a in the same terms as y. In the nested loop, we are calculating all values of a and
coloring them ONLY if they are less than x*x or x2.

 49

Note: Ok, by this time you should be making an attempt to predict the output of your
program prior to running it for the first time. What do you expect the program to do? If
the program doesn't run, then what is wrong with your code? Fix the bugs! If it runs, but
doesn't do what you predict, then rethink your prediction. This is very much a scientific
method! you should also be experimenting on your own in an attempt to expand on the
exercises and concepts presented in the chapter. Only in this manner will you truly
master the material!

You should also be experimenting on your own in an attempt to expand on the exercises
and concepts presented in the chapter. Only in this manner will you truly master the
material!

Sections 5.3 Parametric Equations

 Functions are defined in such a fashion that for each value of x, there can be one
and only one value of f(x).1 This means that we can’t easily plot circles unless we plot
them piecewise by first plotting the top half of the circle followed by the bottom half in
another section of code. By using parametric equations, we can “fix” this problem.
Parametric equations behave much like an “Etch-a-sketch”. The x (horizontal control)
and y (vertical control) are separately manipulated and the result can be a fascinating
curve with none of the “vertical line test” limitations. In order to create a parametric
system of equations, we define both the x and y equations in terms of another variable
such as t. Examples of parametric equations are as follows:

 x = sin(t)
 y = cos(t)

 The equations that define x and y are independent of each other (like the knobs
on an “Etch-a-Sketch”), but together they define a single curve. Let’s see how this
works. Using the program we created in the last section, let’s modify the def
plotfunc(): function to accept parametric equations. First, make certain the
gluOrtho2D command in the def init() function has x and y ranges of -2.0 to 2.0
respectively. Then change the def plotfunc(): to the following:

def plotfunc():
 glClear(GL_COLOR_BUFFER_BIT)
 glColor3f(0.0, 0.0, 0.0)
 glPointSize(1.0)

 # Plot the coordinate axes
 glBegin(GL_LINES)
 glVertex2f(-2.0, 0.0)
 glVertex2f(2.0, 0.0)
 glVertex2f(0.0, 2.0)
 glVertex2f(0.0, -2.0)
 glEnd()

 # Plot the parametric equations
 for t in arange(0.0,6.28, 0.001):
 x = sin(t)
 y = cos(t)
 glBegin(GL_POINTS)
 glVertex2f(x, y)
 glEnd()
 glFlush()

End plotfunc()

1 y = f(x) where f(x) is a common designation for a function of the variable x. Functions must pass
the “vertical line test”, meaning that if we pass a vertical line through any point on the function
graph, it can never intersect the graph in more than one point.

 51

 Remember that in Python you MUST preserve the indentation scheme as shown
in the code listing above in order for the program to work properly.

 Save the program as PyParam.py or something similar. You may want to
change the comment statements at the beginning of the program to reflect the new
program title and program operation. If you run the program, you should see something
like Figure 5.9. It’s a circle!2 Now the fun begins! What happens if we change the
equations for x and y? What happens if we let t range from -6.28 to 6.28?3 Try it!
Change the x and y equations to: x = cos(3*t) and y = sin(5*t) respectively
and change the range of t to: for t in arange(-6.28, 6.28, 0.01):

Figure 5.9

 If you followed the directions on the previous page, your next plot should like
something like Figure 5.10 on the next page. I took the liberty of remarking out the lines
that draw the x and y axis. Isn't this neat?4

 You may be wondering how the circle was plotted in Figure 5.9 or how the neat
Lissajous curve was drawn in Figure 5.10? In order to understand these and other
remarkable plots, we need to briefly discuss the basic trigonometry functions and how
they work to produce these fascinating drawings. You should use Figure 5.11 on the
next page as a reference.

2 6.28 is approximately 2p. There are 2p radians in a circle. See footnote 3.
3 Of course, these are approximations to -2p and 2p just as the original range of t was from 0 to
2p. Trig functions in Python and other programming languages are based on radians rather than
degrees (2p radians = 360o).
4 Research Lissajous or Bowditch curves online. They are remarkable!

 52

 Figure 5.10

 Figure 5.11

 You may (or may not) recall the definitions of the trig functions. The sin of angle
t is defined as the side opposite angle t (in this case the vertical “y” axis leg in the right

triangle in Figure 5.11) divided by the hypotenuse r. Therefore, sin(t) =
r
y

. We normally

 53

assume that r = 1,5 and then y = sin(t). So, the value of sin(t) controls the "y" knob on
our computer "Etch-a-Sketch". Likewise, the cos of angle t is defined as the side
adjacent to angle t (in this case the horizontal "x" axis leg in the right triangle in Figure

5.11) divided by the hypotenuse r. So, cos(t) =
r
x

 and if r = 1, x = cos(t).6 As before,

the value of cos(t) controls the “x” knob on our computer “Etch-a-Sketch”. If the value of
r is held constant (r = 1 or some other value), then as t “sweeps around” like a radar
scope, we draw a perfect circle! Modifying t inside the trig functions “twiddles the knobs”
and we can get some very interesting graphics as seen previously in Figure 5.10.

 The exercises will allow you to explore these concepts further. Save a copy of
the original program for this section as a reference.7 Have fun!

Exercises

 Note: Be prepared to make modifications to the original program as specified by
the exercises. Most of the modifications are minor, but it’s important to retain the original
version of the program in this section for future reference. Why? So you can save time!
Later we will develop a skeleton program that will help save you quite a bit of typing. At
the moment our programs are not lengthy, but by saving the original program you can
save some time by not having to retype every line. Each new program you create in any
exercise should be saved under a different name such as ch5ex3.py or something
equally meaningful.

1) The equations in the program that determine the values of x and y are:

x = cos(t)
y = sin(t)

 You can alter these equations by changing them to:

x = (c*t+d)*sin(t)
y = sin(a*t+b)

 and adding the lines:

 a = 0.5
 b = 0.5
 c = 0.25
 d = 0.0

5 This makes everything nice and easy. Actually, r can be any value we choose and everything
still works just fine. A small circle has the same angles and trig values as a large one… think of a
bulls-eye target. If you sweep through 360o or 2p radians on the largest circle, you do the same
for the smallest. So why not choose r = 1?
6 The tan(t) is the opposite side divided by the adjacent side or

)cos(
)sin(
t
t

.

7 Any new exercises should be named… and saved… as something different than the original
program. That way you will always have easy access to the original code.

 54

just above the glBegin(GL_POINTS) statement to define the variables.8
Experiment with different values of a, b, c, and d. If the plot goes beyond the
graphics window border, you may increase the x and y axis ranges in the
glOrtho2D statement. Be prepared to change these values back to their original
state if needed in future plots.

2) Try using glBegin(GL_LINES) instead of glBegin(GL_POINTS) in the previous

and future programs. Also, try different ranges for t in the for loop. You may find
that if the range is large enough, the plot doesn’t change. What this means is that
the plot is retracing itself as sin(t) and cos(t) revisit the same values.9

3) Try plotting an ellipse using the following parametric equations.10

x = a*cos(t)
y = b*sin(t)

Try values of a = 1.5 and b = 0.50 (as in exercise 1, define the variables
BEFORE you use them) and see what happens. You should see something like
Figure 5.12 on the next page. The “long” axis is called the major axis of the ellipse
and the short axis is called the minor axis. How could you change the values for
parameters a and b so that the major axis was vertically oriented rather than
horizontally oriented?

What happens if you type in the same values for a and b? Try a = 1.5 and b =
1.5, then try a = 1.0 and b = 1.0. Does the resulting plot make sense based on
the values you typed? How does this compare to the original parametric equations
for a circle at the beginning of this section?

So, do you think that ellipses and circles are related? Could you say that a circle
was simply a special case of an ellipse… one in which both major and minor axes
are equal?

4) Change the equations to:

x = sin(t)
y = sin(a*t + b) + c*sin(d*t + e)

and add a line: e = 6.0 below the other variable assignments. Try values of a =
2.0, b = 1.0, c = 1.5, d = 3.5, and e = 6.0 and then run the program.
Experiment with other values for these variables. Change the for loop to:

 for t in arange(-6.28, 6.28, 0.001):

and set the axis ranges as follows:

8 Such variables are often called parameters.
9 Sin and Cos take on the values from -1.0 to +1.0 inclusive. You might try plotting a sin(t) or
cos(t) function (or both) using what you learned in section 5.2. You will see how both functions
continually revisit all values between -1.0 and +1.0 as the angle size increases without bound.
10 Remember to replace or comment out the "old" x and y equations.

 55

 gluOrtho2D(-3.0, 3.0, -3.0, 3.0)

If you are also still plotting x and y axis lines, you should change those statements to
reflect the new ranges above. How?

 Figure 5.12

5) Experiment with the range and step in arange until you notice changes in the

program. For example, you might try: for t in arange(-1.0, 1.0, 0.1):
and then increase the range and decrease the step until the graph remains
unchanged. Trigonometric functions are periodic, which means that the values
generated by such functions have the potential to repeat themselves at certain
intervals (periodically). So, do not be surprised if your graphs do not always change
when you change loop parameters.

6) First, save the parametric plot program with a new name so that you can preserve

the original def plotfunc(): as a starting point for further experiments. Then,
comment out the lines that assign values to each of the variables a through e and
modify def plotfunc(): so that it looks like the following. Remember to indent at
the same level after each for statement!

 def plotfunc():
 glClear(GL_COLOR_BUFFER_BIT)
 glColor3f(0.0, 0.0, 0.0)
 glPointSize(1.0)

 for a in arange(0.1, 2.0, 0.1):
 for t in arange(-4.4, 4.4, 0.01):
 x = 0.3*a*(t*t – 3)
 y = 0.1*a*t*(t*t – 3)
 glBegin(GL_POINTS)
 glVertex2f(x, y)
 glEnd()
 glFlush()

 56

 # End plotfunc()

 This code construction is called a nested loop. There are two loops involved; the
second for loop is inside or “nested” within the first. As the variable a in the outer loop
takes on each value in the range from 0.1 to 2.0, stepping by 0.1, the inner t loop makes
a complete cycle through its entire range. This set of equations draws a series of nested
figures called Tschirnhausen’s Cubic.11 One entire looping curve is drawn by the t loop
for each value of a produced by the outer loop. Figure 5.13 illustrates Tschirnhausen’s
Cubic.12 In order for your plot to look exactly like Figure 5.13, you will need to make
certain the gluOrtho2D ranges are as follows:

 gluOrtho2D(-2.0, 2.0, -2.0, 2.0)

This is not strictly necessary, however. The plot looks fine with the larger ranges from
previous exercises.

 Figure 5.13

7) The next experiment is called Miller’s Madness.13 Change the equations in the def

plotfunc(): in the original parametric plotting program14 at the beginning of this
section to:

 x = sin(0.99*t) - 0.7*cos(3.01*t)
 y = cos(1.01*t) + 0.1*sin(15.03*t)

and the loop statement to:

 for t in arange(-200.0, 200.0, 0.005):

11 Dewdney, A. K. (1990). “The Magic Machine”. P. 272
12 Parametric equations don’t have to use trig functions as this problem demonstrates.
13 Dewdney, A. K. (1990). “The Magic Machine”. P. 276
14 You did save it, didn’t you?

 57

then save the program with a new name15 and run it. It may take a few seconds to
complete the drawing, but I think it’s well worth it as Figure 5.14 shows! I do
recommend that you set the x and y axis ranges in gluOrtho2D to:

 gluOrtho2D(-2.0, 2.0, -2.0, 2.0)

if you haven't already done so for the most pleasing plot dimensions. You may be
thinking at this point that changing the gluOrtho2D plot ranges is a method for
zooming into a plot. You are correct! However, this is very inefficient. Later on in
the text we'll learn how to zoom a bit more efficiently.

 Figure 5.14

8) Invent your own equations for x and y! If you get something particularly pleasing,

make certain you save that program. Also, experiment with different colors for the
backgrounds16 and plot points.

9) This is a challenge exercise. See if you can draw an ellipse that is oriented on a

different axis (such as the y = x diagonal) rather than the x or y axis. If you want to
do this the easy way, research the glRotatef command in the RedBook or online.
For a greater challenge, try to accomplish this task using parametric equations. Yes,
you may research this topic online, but try to experiment on your own first.

10) Figure 5.10 illustrated a Lissajous/Bowditch curve using x = cos(3.0*t) and y =

sin(5.0*t) as equations. Change these to x = cos(a*t) and y = sin(b*t)
and make certain that you have program lines defining a and b just above
glBegin(GL_POINTS) as in exercise 1. Make certain that t ranges from 0.0 to
6.28 in the for loop with a step of 0.001. Try the following parameters:

15 I would suggest pyMiller.py or ch53ex7.py. You may think you are accumulating a lot of
programs, but we’ve only just begun.
16 glClearColor(0.35, 0.79, 0.60) for an odd shade of turquoise, etc.

 58

 a = 3.0 and b = 5.0 (which should reproduce figure 5.10).
 a = 3.0 and b = 7.0
 a = 3.0 and b = 9.0
 a = 3.0 and b = 11.0
 a = 5.0 and b = 11.0

 Do you notice a pattern between the values for a and b and the resulting
graphic? Look at the figures below, each labeled with the corresponding values for a
and b. What happens if a = b? Why does a = 3.0 and b = 9.0 behave as it does?
Try some addition combinations and see what happens. What if a > b, such as a =
5.0 and b = 3.0? What do the numbers 3, 5, 7, and 11 have in common?

 a = 3.0, b = 7.0 a = 3.0, b = 9.0

 a = 3.0, b = 11.0 a = 5.0, b = 11.0

 Note: The following exercises are designed to illustrate some well-known
mathematical curves. The figures associated with these curves are found at the end of
the exercises.

 59

11) The Astroid curve (no, not an asteroid). Use the following equations for x and y.

 x = a*cos(t)**3
 y = a*sin(t)**3

 Try an x and y axis range of -5.0 to 5.0.17 Did you get an Astroid? What do you
think the parameter “a” specifies? Try a = 5.0 and then a = 2.5. What does the
parameter “a” do? This curve is also called the tetracuspid because it has 4 cusps.18
The curve can be formed by rolling a circle of radius a/4 on the inside of a circle of
radius a.19 What happens if you modify the for loop to for t in arange(0.0,
3.14, 0.001): instead of for t in arange(0.0, 6.28, 0.001):? Remember
there are 2p radians in a complete circle, so 0.0 to 6.28 is equivalent to 2p.

12) The Cardiod.20 The Cardiod is drawn by tracing a point on a circle as it rolls around

another circle of the same radius. A Cardiod is drawn using the following equations:

 x = a*(2.0*cos(t) - cos(2.0*t))
 y = a*(2.0*sin(t) – sin(2.0*t))

 Set a = 0.5 or change the x and y axis ranges from -2.0 to 2.0. The graphic
should look like the Cardiod plot at the end of the exercises. We’ll revisit the Cardiod as
a polar equation in section 5.5. Again, what purpose does the a parameter fulfill in this
equation? At times, parameters determine the scale or size of the plot and at other
times the parameter may determine the number of some feature of the graph. Feel free
to experiment with any and all parameters! Where do you think the name “Cardiod”
came from?

 Also, feel free to experiment with various colors, point sizes, and line widths! The
displayed figures in exercises 10, 11, and 12 were drawn with glPointSize(2.0).

13) The Epicycloid.21 This curve is traced by a point P on a circle of radius b which rolls

around a fixed circle of radius a. Use the following parametric equations:

 x = (a + b)*cos(t) – b*cos((a/b + 1.0)*t)
 y = (a + b)*sin(t) – b*sin((a/b + 1.0)*t)

 We need to expand the range of the x and y axes from -20.0 to 20.0 to see this
plot properly. The loop statement should be for t in arange(-12.56, 12.56,
0.001): to both increase the range of t and decrease the step size. Try parameter
values a = 12.0 and b = 2.25. Also, modify glPointSize to
glPointSize(1.0) if necessary.

17 Modify the gluOrtho2D statement in the init function. Figure it out!
18 The tetracuspid belongs to a family of curves known as the hypocycloids.
19 Kokoska, Stephen. “Fifty Famous Curves, Lots of Calculus Questions, And a Few Answers”.
Dept. of Mathematics, Computer Science, and Statistics, Bloomsburg University.
20 Ibid
21 Ibid.

 60

 Experiment with various ranges of t and other parameter values for a and b.
You may need to change the ranges for the x and y axes in gluOrtho2D as you
experiment in order to obtain the most pleasing plot. Also be prepared to change the
step size in the loop statement if needed. You may find out that a step of 0.01 or
0.001 is not small enough to obtain an unbroken plot.

14) The Epitrochoid.22 The circle of radius b rolls on the outside of the circle of radius a.

The point P is at a distance c from the center of the circle of radius b. The
parametric equations for the Epitrochoid are:

 x = (a + b)*cos(t) – c*cos((a/b + 1.0)*t)
 y = (a + b)*sin(t) – c*sin((a/b + 1.0)*t)

 Keep all ranges (x and y axes and the loop range for t) the same as in the
previous exercise. Try values of: a = 12.0, b = 2.25, and c = 5.0. Keep
glPointSize(1.0) unless you prefer a “thicker” plot.

 Again, feel free to experiment with the parameters a, b, and c. See if you can
figure out the purpose of each of the parameters based on your experiments and on the
definition of the Epitrochoid.

15) The Hypocycloid.23 A circle of radius b rolls on the inside of a circle of radius a. The

point P is on the edge of the circle of radius b. Try the following equations:

 x = (a - b)*cos(t) + b*cos((a/b – 1.0)*t)
 y = (a - b)*sin(t) – b*sin((a/b – 1.0)*t)

 Keep the same values for a and b as we started with in the previous two
exercises: a = 12.0, b = 2.25. Change the x and y axis ranges to -15.0 to 15.0
by changing the gluOrtho2D statement in the init function to
gluOrtho2D(-15.0, 15.0, -15.0, 15.0).

16) The Hypotrochoid.24 A circle of radius b rolls on the inside of a circle of radius a.

The point P is at distance c from the center of the circle of radius b. Try the following
equations:

 x = (a - b)*cos(t) + c*cos((a/b – 1.0)*t)
 y = (a - b)*sin(t) – c*sin((a/b – 1.0)*t)

 Keep the x and y axis ranges at -15.0 to 15.0 as in the previous exercise and
the parameters a = 12.0, b = 2.25, and c = 5.0.

17) The Involute of a Circle.25 The Involute of a Circle is the path traced out by a point

on a straight line that rolls around a circle. The equations are:

22 Ibid.
23 Ibid.
24 Ibid.
25 Ibid.

 61

 x = a*(cos(t) + t*sin(t))
 y = a*(sin(t) – t*cos(t))

The x and y axes should range from -25.0 to 25.0. The t loop should be:

 for t in arange(0.0, 25.12, 0.001):

Let parameter a = 1.0. Your plot should resemble a spiral.

18) The Nephroid.26 The name Nephroid means kidney-shaped. It is formed by a circle

of radius a rolling externally on a fixed circle of radius 2a. Use the following
equations:

 x = a*(3.0*cos(t) – cos(3.0*t))
 y = a*(3.0*sin(t) – sin(3.0*t))

 The x and y axis ranges should be from -5.0 to 5.0. Parameter a = 1.0. In
the last two exercises, parameters b and c are not used and may be remarked out or
assigned any value (“1.0” is preferred). Your Nephroid plot should look like the figure at
the end of these exercises (you may have to use your imagination to see a kidney?).

19) Talbot’s Curve.27 There are several forms to this curve, one of which looks like a

football. See if you can find the parameters for the football! The equations are:

 x = ((a**2 + c*c*sin(t)**2)*cos(t))/a
 y = ((a**2 – 2.0*c**2 + c*c*sin(t)**2)*sin(t))/b

Try the following for loop:

 for t in arange(0.0, 6.28, 0.001):

Parameters a, b, and c should be: a = 1.925, b = 4.0, and c = 1.725. The x and
y axis ranges can start out at -2.0 to 2.0, but may need to be expanded for different
parameters of a, b, and c.

20) The Triscuspoid.28 This curve is created by the following equations:

 x = a*(2.0*cos(t) + cos(2.0*t))
 y = a*(2.0*sin(t) – sin(2.0*t))

 The plot range for both the x and y axes should be -5.0 to 5.0 and assign
parameter a the value 1.5 (a = 1.5).

21) The final parametric curve will be the famous “Witch of Agnesi”.29 The equations are

simple:

26 Ibid.
27 Ibid.
28 Ibid.
29 Ibid.

 62

 x = a*t
 y = a/(1.0 + t**2)

 You can set a = 1.0. The x and y axis plot range should go from -2.0 to 2.0
and the loop should be:

 for t in arange(-2.0, 2.0, 0.001):

Note that we are not using trig functions in this plot, so we don’t have to concern
ourselves with multiples of p radians. The plot is not very scary for a “witch”. Research
this curve and find out how it got its name.30

 Astroid Cardiod

 Epicycloid Epitrochoid

30 I have been a bit remiss in using the word "research". My intent is for you to find at least 3
different resources online (or in a text or journal) that are consistent in their definitions. In this
new world of internet information, one must be VERY careful in choosing a source upon which to
base a conclusion. Don't believe everything you read or see online!

 63

 Hypocycloid Hypotrochoid

 Involute of a Circle The Nephroid

 Talbot’s Curve Tricuspoid

 64

 Witch of Agnesi

Section 5.4 An Example from Physics

 One of the first uses (maybe even the first use?) of computers was to calculate
the trajectories of artillery shells.1 For an artillery shot, we would be concerned about the
angle of the cannon barrel and the speed of the cannon (if on a ship). We would also
want to know the mass of the shell, the amount of powder used, the distance to the
target, the wind speed and direction at various altitudes, the friction of the atmosphere,
and perhaps even the weather and humidity conditions. Our simulation will be far
simpler. We will plot the trajectory of a cannon shell based only on the angle of the
cannon barrel and how fast the shell is traveling when it leaves the cannon.2 We’ll
assume no friction forces.

 If we were to do this problem as a typical exercise in a physics text, the problem
would be stated something like this: How far will a cannon shell travel if it has a muzzle
velocity of 357 m/s and the angle of elevation of the cannon is 57 degrees above the
horizontal? Also, find the highest altitude reached by the cannon shell in this problem?

 Figure 5.15

 Figure 5.15 illustrates the initial conditions in this problem. In order to find a
solution mathematically, we would use the following procedure. First, we would realize
that we have been given a velocity vector of 357 m/s at 57 degrees above the

1 Until the electronic computer, trajectories were calculated by hand using a slide rule. The
computer automated this process immensely.
2 The muzzle velocity.

 66

horizontal.3 Vectors are composed of two parts, a horizontal component and a vertical
component. These components are independent of each other; for example, the
horizontal velocity of an artillery shell over the earth is not in any way dependent on its
vertical movement due to gravity. In other words, gravity does not change regardless of
how fast one is moving horizontally and horizontal speed is not affected by gravity.

 We have two different problems to solve in this example. The first problem is to
calculate how fast the shell is traveling horizontally (with respect to the earth). Once we
know this value, how far the shell flies is determined by how long it remains in the air.4
The calculations are not too difficult, so let's do them "by hand". First, let's determine the
horizontal velocity (the x component). From Figure 5.15 we see that we'll use the cos

function. If cos(t) =
r
x , then x = r cos(t).5 In this case, x, the horizontal velocity, equals

357 m/s (r) times the cos(57).6 The horizontal velocity of the shell is about 194 m/s. So
for every second the shell is in the air, it travels 194 meters horizontally.

The second part of the problem is a bit more difficult. Let's first calculate the

initial vertical velocity of the shell (the y component). If sin(t) =
r
y , then y = r sin(t).

Multiplying 357 m/s times the sin(57)7 gives us a value of about 299 m/s for the initial
vertical velocity of the shell.8 We are not finished with the vertical y velocity, though! We
must calculate how long the shell will remain in the air. It starts upward at a rate of 299
m/s, but immediately begins to slow down due to gravity. Eventually, the shell will reach
its highest point and for the briefest of times, will have a vertical velocity of zero. It will
then begin to fall back to the earth, its velocity increasing each second at a rate
consistent with gravity. How do we solve for the time of flight?

We know that the initial vertical velocity is 299 m/s. We know that gravity has an

acceleration of -9.8 m/s2.9 We also should know that nature exhibits symmetry in our
ideal problem… in other words, the first half of the flight is a mirror image of the last half.
If our initial vertical velocity is +299 m/s, the final vertical velocity when the shell strikes
the ground at the end of its flight will be -299 m/s (notice the sign change).10 There is a
physics formula that states vf = vi + at… final velocity equals initial velocity plus the

acceleration times the time. Solving for time: t =
a

vv if −
. So, t = (-598 m/s)/(-9.8 m/s2),

3 Remember, a vector in physics represents both a magnitude and a direction. A scalar
represents magnitude only. Velocity is a vector, temperature is a scalar.
4 Distance = rate x time!
5 And you thought you would never use algebra?
6 About 0.545 if we assume the value in the parentheses to be in degrees. The trig functions in
Python and other languages normally assume the values representing angles to be in radians
7 About .839, again assuming the angle is in degrees. More on this later.
8 The positive values for both x and y indicate motion to the right and upward respectively. Vector
direction can be established by +/- signs. Most of the time, a positive number indicates an
upward direction for y and motion to the right for x. The opposite sign (-) would indicate motion in
the opposite direction. This is defined by humans and not absolute.
9 The negative sign indicates an acceleration downward toward the center of the earth.
10 This is why you should NOT fire a gun up into the air. When the bullet comes back down, it is
perhaps not moving quite as fast as it was when it left the gun (due to air friction), but it's still
moving at a lethal velocity.

 67

or t = 61.0 seconds. The shell is in the air slightly more than a minute. The distance the
shell travels is: distance = (horizontal rate) (time) or distance = (194 m/s)(61.0 sec) =
11800 meters (approximately). That's almost 12 kilometers… a bit over 7 miles!

What is the maximum altitude reached by the shell? In physics, there are several
ways to solve for this value, but if we use our head, we might make the problem
somewhat easier. The total time in the air was 61.0 seconds. This means that it took
30.5 seconds for the shell to climb to its highest point and another 30.5 seconds to fall
back to earth. Let's focus on the last half of the journey. The time it took to fall from rest
(remember, the vertical velocity at the peak height is zero) back to earth was 30.5
seconds. There is a formula which states that the distance an object travels equals one-
half its acceleration times the square of the time, or: d = 0.5at2. In this case, distance =
0.5(-9.8)(30.5*30.5) = -4560 meters.11 This is a height of over 4.5 kilometers… almost 3
miles!

Well, that was a lot of algebra for a single problem and I included the

mathematics in the text for comparison purposes. Since we are interested in
programming, the question becomes "Can we write a Python program that will not only
do the proper calculations for us, but also display the flight of the shell (the trajectory)?"
Of course we can! What should our program look like when it runs? The program
should ask for two inputs in the terminal console. The first input should be the angle of
elevation of the cannon barrel in degrees. The second input should be the muzzle
velocity of the shell in meters per second (m/s). We then want the code to solve the
problem and plot the trajectory of the projectile12 in an OpenGL window. By the way, if
you were thinking that the solution of this problem looked a bit like the parametric
equations we studied in the last section, you are thinking correctly! We used two sets of
parametric equations here in this situation. The first set of parametric equations used
the cannon barrel angle measurement to determine the individual velocities of x and y.
The second set of equations used t (time) to solve for flight duration and distance
traveled. We are actually using calculus in this program to solve our trajectory problem.
Now that's impressive... be sure to tell your math teacher!

When we solved the physics problem algebraically, we found a solution for a

single set of angle and velocity parameters. Unless we are willing to painstakingly
create a table of elevation angles and muzzle velocities,13 we will have to algebraically
solve each new problem in the same manner. Our computer program must be flexible
and able to solve any reasonable problem of the same type without major code
revisions. This program is the most ambitious we’ve tackled thus far. We will build on
the previous programs and add many new features. Be very careful to type in the code
without errors. Save the program as pycannon.py or something similar.

Here is the program listing for pycannon.py. As usual, pay CLOSE attention to

the indentations!

PyCannon.py
A Physics Simulation

11 The negative sign means that we are measuring downward. Distance is a vector, having both
magnitude and direction. It's still 4560 meters high!
12 A fancy "more official" name for an object obeying gravity and the laws of physics.
13 Such tables were created for wartime use by both human computers and electronic computers.

 68

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from numpy import *
import sys

global horizvel
global vertvel

def init():
 global horizvel
 global vertvel

 # White background
 glClearColor(1.0, 1.0, 1.0, 1.0)

 # Large range for long shots
 gluOrtho2D(-200.0, 12000.0, -200.0, 5000.0)

 # Input angle and muzzle velocity
 angle = input("Enter the angle of elevation: ")
 muzzvel = input("Enter the muzzle velocity of the shell: ")

 # Convert the degree angle to radians
 radangle = (angle*3.1415926)/180

 # Solve for horizontal and vertical initial velocities
 horizvel = muzzvel*cos(radangle)
 vertvel = muzzvel*sin(radangle)

 # Print out the initial velocities in the console
 print
 print ("Horizontal Velocity (m/s) = "), horizvel
 print ("Vertical Velocity (m/s) = "), vertvel

def plottrajectory():
 global vertvel
 global horizvel

 # We can now calculate and change vvel
 # While preserving the original vertvel
 vvel = vertvel
 hvel = horizvel

 glClear(GL_COLOR_BUFFER_BIT)
 glColor3f(0.0, 0.0, 0.0)

 # Draw some horizontal and vertical axis lines
 glLineWidth(2.0)
 glBegin(GL_LINES)
 glVertex2f(0.0, 0.0)
 glVertex2f(20000.0, 0.0)

 69

 glVertex2f(0.0, 0.0)
 glVertex2f(0.0, 15000.0)
 glEnd()

 # Set the height of the cannon barrel
 # Initalize variables for later use
 height = 2.0
 dtime = 0.0001
 dist = 0.0
 maxheight = 0.0

 # Plot the trajectory as long
 # as the height is above the ground
 while height > 0.0:

 # Equations to calculate distance and
 # Height for each unit of time.
 dist = dist + hvel*dtime
 vvel = vvel - 9.8*dtime
 height = height + vvel*dtime

 # Find the max height.
 if maxheight < height:
 maxheight = height

 # Plot the trajectory
 glBegin(GL_POINTS)
 glVertex2f(dist, height)
 glEnd()
 glFlush()

 # Print the solutions. Not indented!
 print
 print("Distance traveled (m) = "), dist
 print("Maximum altitude (m) = "), maxheight

def main():
 glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE)
 glutInitWindowPosition(50, 50)
 glutInitWindowSize(800, 600)
 glutInit(sys.argv)
 glutCreateWindow("How Far Will It Go?")
 glutDisplayFunc(plottrajectory)
 init()
 glutMainLoop()

main()
End Program

 Save and run the program. Use the values of 57 for cannon angle and 357 for
the muzzle velocity to replicate the problem we solved by hand earlier in this section.

 70

You should see something similar to Figure 5.16 if all went well. The graph looks like a
parabola, which shouldn’t be too surprising if you have ever watched the flight of a
thrown or batted ball. Perhaps we’ve “discovered” a parametric representation of a
parabola?

 This program is longer and more complex than our previous efforts. You should
notice that I've made an attempt at using more verbose comments than in previous
listings. The import lines are the same as in earlier programs. However, we see two
new lines:

global horizvel
global vertvel

Variables in Python are usually local, meaning that they are defined only in the function
in which they are used. For example, in the def init(): function, the variables
angle, muzzvel, and radangle are used for calculations, but they are valid only in
this function. The plottrajectory function knows nothing of these three variables! If
we need to use a variable throughout the program, we need to declare the variable as a
global variable.14 Here, we are using two global variables, horizvel and
vertvel. These variables will store the horizontal and vertical velocities respectively. I
anticipate needing to use the values stored in these variables in other places, hence the
global declaration.

 Figure 5.16

14 Python experts frown on using global variables, but… well, the experts aren’t here now, are
they? I think global variables are handy in simple situations such as this program. The
problem is that Python makes it a bit difficult to declare them properly and if too many global
variables are used in a large program, they can be easy to forget, misplace, or misuse.

 71

 The program closely follows the algebraic solution given at the beginning of this
section and remark statements are used to help clarify many of the code statements. In
the def init(): function, we first declare (again) the global variables horizvel and
vertvel. We must do this in each function that assigns or changes the values of these
variables. The glClearColor command is not new, but notice in gluOrtho2D how
the range has been changed considerably to reflect the nature of this problem. We then
use an input statement to store the cannon elevation angle (in degrees) and muzzle
velocity in the variables angle and muzzvel. The trig functions needed to calculate the
horizontal and vertical components of the muzzle velocity can’t use angle measures in
degrees, so we must convert degrees to radians using the standard conversion:15

 radangle = (angle*3.1415926)/180

 Next we solve for both the horizontal and vertical components of the muzzle
velocity vector. These components serve and the initial horizontal and vertical velocities
in the problem. The horizontal velocity remains constant since there is no friction in our
ideal world. The vertical velocity changes due to the influence of gravity.

 horizvel = muzzvel*cos(radangle)
 vertvel = muzzvel*sin(radangle)

 As an added touch, we print the values of horizvel and vertvel in the
console window at the end of the init() function. The “empty” print statement
simply inserts a blank line for “pretty print”.

 In the def plottrajectory(): function, we again declare the global
variables horizvel and vertvel. We also add the lines:

 vvel = vertvel
 hvel = horizvel

The vertical velocity of the cannon shell will be changing due to gravity. If we resize the
graphics window, the trajectory will need to be redrawn. If we don’t preserve the original
value of vertvel, our solution and plot will be incorrect. By assigning vvel the value
of vertvel, we can keep the initial vertical velocity stored in vertvel “safe” for future
use. Similarly, we need to preserve the initial horizontal velocity in horizvel for the
same reason; we may need to use it again!

 The next few lines are business as usual, except we are moving the origin to the
lower left corner and extending the axis lines to reflect the extended range. We then
declare some local variables:

 height = 2.0
 dtime = 0.0001
 dist = 0.0
 maxheight = 0.0

15 Radians =

180
deg*π

 72

 The variable height is the initial height of the cannon barrel above the ground
(in meters). dtime is the time slice used to calculate the trajectory of the shell.16 We
then set the dist (distance) and maxheight variables to zero. This serves to declare
the variables so they can be used properly and also assigns them an initial value.

 We now let Python calculate the solution:

 while height > 0.0:

 # Equations to calculate distance and
 # Height for each unit of time.
 dist = dist + hvel*dtime
 vvel = vvel - 9.8*dtime
 height = height + vvel*dtime

 # Find the max height.
 if maxheight < height:
 maxheight = height

 # Plot the trajectory
 glBegin(GL_POINTS)
 glVertex2f(dist, height)
 glEnd()

 # End of while loop

 As long as the height of the shell is above the ground (while height >
0.0:), we continue calculating the distance (dist), vertical velocity (vvel), and
height. The equations may look a bit strange, but let’s think about them a bit. In the
dist equation, we simply take the current distance (where the shell is at that instant)
stored in the variable dist (on the right side of the “=”) and add to this value the
additional distance calculated by hvel*dtime (rate x time). This cumulative value, the
current distance plus the new distance, is then reassigned to the dist value on the left
side of the “=”. This is how we keep a running total of the horizontal distance traveled.
The vertical velocity (vvel) is calculated in a similar fashion. The current vertical
velocity (vvel) on the right side of the “=” is modified by -9.8*dtime (-acceleration x
time) and the new value is assigned to vvel on the left side of the “=”. The height
above the ground is calculated by using the current height (on the right side of the “=”)
and modifying this value by adding vvel*dtime (rate x time). The new height is then
assigned to the “height” variable on the left side of the “=”. If the term “iteration” came
to you during this discussion, then you are a true computer geek17… this process
definitely illustrates the concept of iteration. We are using the output from one set of
calculations as input for the next set (notice that the variables vvel and height appear

16 "dtime" is a crucial variable. We are solving this problem by dividing it into many small pieces
and then adding up the results of each piece to provide a total solution. The size of "dtime"
determines the size of the "piece" of the problem. This numerical method can be quite accurate
depending on the size of the time slice or "piece". We are actually doing calculus here!
17 I mean this in a nice way, of course! It is absolutely a compliment to be called a “geek”.

 73

on BOTH sides of the “=”) and repeating the process until the shell height is 0.0,
meaning that the shell has hit the ground!

 How do we find the maximum height (maxheight)? As the shell is going
upward, each new position is the maximum height, so we can set the maxheight
variable equal to height (maxheight = height). We do this by checking to see if
the new height is greater than the old maxheight (if height > maxheight:). If
this is true, and it always will be as the shell is rising, then we set maxheight =
height. As we pass the very top of the trajectory, the height begins to decrease and
will never again be greater than the "old" maxheight variable. The maxheight
variable will no longer change because the maxheight = height statement will be
ignored (if height > maxheight: is now false... height is LESS than maxheight
because the shell is on the way down). As a result, we have preserved the value of the
maximum height in the maxheight variable. At the end of the code block the points
corresponding to each (dist, height) ordered pair are plotted using the glVertex2f
statement, creating the parabolic trajectory.

 The print statements that display the numerical results of the problem
calculations are not indented at the same level as the other lines in the
plottrajectory function. This insures that these lines are NOT in the while loop
and only display the final results at end of the function when the calculations are
complete.

 In order to obtain a computer solution to a problem that unfolds over time, such
as the projectile example here, we must simulate as closely as we can the conditions of
the problem. For all practical purposes, time is a continuous process. This means that
there are no “breaks” in the flow of time and that no matter how finely we divide a unit of
time, we will never reach a point where time doesn’t exist… in other words there are no
holes in a real timeline! Computers are unable to handle such a number system. There
is a practical limit to the precision of computer arithmetic. Eventually, if we keep dividing
a number, we’ll reach a point where our computer can no longer distinguish between two
adjacent values. This limit is usually around 15 or 16 decimal places.18 In English, this
means that there are “holes” in the computer number line.19 How do we reconcile the
real world arithmetic (which is infinitely precise) with the computer world arithmetic
(which is “holey”)? We do the best we can. In this problem, we divide up the time flow
of the problem into the smallest units of time we can, given the speed of our computer.
In this way, we can approximate behavior of a real projectile under ideal conditions.20

18 Depending on the computer, the software, the programmer, etc. The more decimal places, the
longer it takes to make a calculation. If we want our computer to do "real-time" simulations, we
can't take much time for an individual calculation. Hence the trade-off between speed and
precision.
19 Assume that your computer can only represent 3 decimal places. Your computer could not tell
you the difference between 0.3210123 and 0.3210321. This may not seem important, but as we'll
see later, this difference is huge when it comes to real-world simulations.
20 The time-slice method works this way: the first time step or slice uses the initial conditions for
the whole problem… zero time and the initial values for all variables. The program then solves
the problem for this small time slice. The solution to the first time slice becomes the initial
conditions for the second time slice and the computer then solves that problem. The solution for
the second time slice becomes the initial conditions for the third… and so on. The final answer is

 74

 You can think of it this way. We are slicing (using the dtime “knife”) the problem
up into hundreds, thousands, or even millions of sequential pieces. The computer
solves each individual “piece” and sums the total for the approximate answer to the
problem. The tinier the slice (the smaller the dtime variable) the more closely we mimic
nature and the more accurate our answer. The problem is that if we make dtime too
small, the computer simulation takes longer to run… much longer, possibly, than actually
doing the real experiment. We must find a balance between runtime and accuracy.21
You might think that using computers to solve equations isn’t such a good thing when we
can get more precise (possibly) answers by solving the equations manually or with a
computer algebra system such as Mathematica. However, many (most?) equations
involved in physical models can’t be solved easily or perhaps not at all using manual
(analytic) methods. In that case, we have no choice but to use a computer.

 The moral of the story is that computers can be very flexible problem-solving
devices. When we solve a physics example by hand, we employ analytical methods and
find an algebraic solution. Computers, if programmed properly, can do this as well. In
this example, we used both analytical methods (to solve for initial horizontal and vertical
velocities) and numerical methods (to calculate running totals for distance, vertical
velocity, height, and maxheight). Numerical methods follow a recipe or algorithm to
arrive at solutions to problems. This may not seem important, but many equations
simply can't be solved by any other method. In any case, computers are very valuable
tools for calculating solutions to problems.

 When working these exercises, you may want to save the original program from
this chapter under a different name and work with the newly named version. That way
you preserve the original in the event you need it later. Most of the modifications
required in the exercises are easily reversed by simply assigning variables to their
original state or removing the new lines of code.

Exercises

1) Try several different problem scenarios. You may have to adjust the ranges in

gluOrtho2D to display the results.

2) Change the gravitational constant in vvel = vvel - 9.8*dtime" in the

plottrajectory function to -1.6 (keep the "-" sign in place). This will simulate
gravity on the moon. You will probably have to adjust the plot ranges in
gluOrtho2D!22

3) In exercise 2, change the sign from "-" to "+" and see what happens. Before you run

the program, see if you can predict the outcome. Were you correct?

4) This exercise will be a challenge. For every muzzle velocity, there is a maximum

horizontal distance a projectile will travel. Try an angle of 45 degrees and a muzzle

the summation of the solutions for all the small time slices. Each plotted point of the trajectory is
a solution to a particular time slice. Again, this is calculus!
21 Or you use a super-computer, computer cluster, or grid.
22 Also adjust the axis line ranges in the glBegin(GL_LINES) section of code!.

 75

velocity of 350 m/s. Write down the distance the projectile travels. Now try an angle
of 40 degrees with the same muzzle velocity. Try an angle of 60 degrees with the
same muzzle velocity. What do you notice? Now here is the challenge. Can you
find pairs of different angles that produce the same distance with the same muzzle
velocity? Is there a pattern to these "double angles" that would allow you to predict a
method that, when given one angle, you can find the other?

5) Try various values for dtime. What happens when you reduce the value of dtime

for a shorter time interval? What happens when you increase the value of dtime for
a longer time interval? Which is best for solving the problem, a very short time
interval (dtime < 0.0001) or a longer time interval? Why?

6) You may want to try different plot colors, line widths, and point sizes for the program.

Also experiment with the background color. What combination of settings provides
the most pleasing display?

7) Calculate the distance an object (such as a bowling ball) would travel horizontally if it

drove off a vertical cliff at a certain velocity. Say we have an a bowling ball traveling
at 50 m/s and it flies off a 1000 m cliff. How far away from the cliff would the ball
strike the valley floor? Hint: Look at the height variable to take the altitude of the
cliff into consideration and consider what the angle of elevation should be.

8) An addition to problem 7 would be to print vertical velocity of the auto as it strikes the

ground. Where would you place this print statement in the program and what
variable would you use?

9) Research beowulf clusters, grid computing, and supercomputers. What are the

possible uses of such computer systems? Why might they be valuable to us based
on what you have learned in this section? Google "MPICH Blank" if you are
interested in building your own private beowulf cluster.23

10) Sometimes a physics problem will ask for the total amount of time an event takes to

complete. It would be nice to have our program calculate the total time the shell (or
bowling ball) is in the air. You might think that the variable dtime contains this
information, but this is not correct. "dtime" contains the length of the time step or
slice… remember, we are breaking this problem up into many small individual
problems and summing them for a final solution. Here's more than a hint: if we can
add up the number of time slices in the problem, we can calculate a total time of
flight. Place the line: totaltime = 0.0 immediately underneath the section
where we assign initial values to height, dtime, dist, and maxheight. The
variable totaltime will store the total time of flight, so we need to define
totaltime and initialize it to 0.0. Place the statement totaltime += dtime in
the while height > 0.0: loop immediately after the line height = height +
vvel*dtime. Finally, we need to print the value of totaltime. I'll leave that up
to you… but make certain you follow the format of the other print statements by
providing information about the value you are displaying.

23 Yeah, that's me.

 76

11) Redo exercise 7 using the totaltime concept in exercise 10. This will tell you how
long it takes to fall a certain height (under ideal conditions). Using symmetry, you
can determine this information from a ground launched projectile (as in the original
problem) by dividing the total flight time in half.

12) The problem as stated involves an ideal situation… we are assuming no friction.

How could we simulate the effects of friction? At first thought, we might try
subtracting a small value from the horizontal and vertical velocities. Let's see how
this works. Change the while height > 0.0: loop as follows, noting the
addition of hvel -= 0.001 and vvel -= 0.001. Both of these modifications
subtract 0.001 from the motion (we think?) of the cannon shell, hopefully(?)
behaving like friction. Use the original values of 57 degrees elevation and 357 m/s
muzzle velocity.

while height > 0.0:

 # Equations to calculate distance and
 # Height for each unit of time.
 dist = dist + hvel*dtime
 vvel = vvel - 9.8*dtime
 height = height + vvel*dtime
 hvel -= 0.001
 vvel -= 0.001

 # Find the max height.
 if maxheight < height:
 maxheight = height

 # Plot the trajectory
 glBegin(GL_POINTS)
 glVertex2f(dist, height)
 glEnd()

 # End of while loop

 Here's the plot in figure 5.17

 Figure 5.17

 77

 That's some strong wind blowing from right to left... only the wind isn't blowing!
Friction opposes motion, it doesn't cause motion.24 Our model is incorrect. It turns
out that friction in a fluid is much more complicated than our simple 0.001
subtraction. Friction only works when an object is in motion. Once an object
reaches zero velocity, friction will not make it move less! So, friction depends on
motion and we need to reflect this idea in our model. Modify the hvel and vvel
"friction" lines as follows:

 hvel -= .00000002*hvel**2
 if vvel > 0.0:
 vvel -= 0.00000002*vvel**2
 else:
 vvel += 0.00000002*vvel**2

 In this new model, the friction depends on the motion in hvel and vvel.25 If
either becomes zero, then friction also becomes zero. You may wonder why we've
added an if..else statement? First, in the hvel equation, friction is always
negative because the projectile always moves toward the right with a positive
velocity (hvel > 0.0). With the vvel equations, if vvel > 0.0: (the shell is
going upward), then we need to subtract from the positive vvel value. If vvel is
negative (vvel < 0.0), then the else statement is called and we ADD a positive
expression to vvel. I know this sounds confusing, but we must make certain that
friction always opposes (has the opposite sign of) motion. There are times when the
vvel is positive (going up!) and there are times when vvel is negative (falling
down!). The two vvel statements in the conditional block serve the purpose of
always opposing the motion of vvel.26 The value of 0.00000002 is “made up” in that
I simply wanted to provide a constant that represented27 the density/viscosity of air.

 Run the model again using the same initial values and compare the results of
figure 5.18 on the next page with figures 5.17 and 5.16. You can see that the
trajectory is definitely not a perfect parabola as in figure 5.16 and the projectile is not
“blown” backwards as in figure 5.17. You’ll also note that the maximum height and
distance are considerably reduced. The new model still doesn’t perfectly portray
friction, but it’s better than the first effort. In science, models are useful to the extent
that they accurately portray nature. A model aircraft in a wind tunnel is not the same
thing as the real airplane in flight, however we still may learn something useful from
the model. We might be able to say the same thing about our projectile/air friction
model here. The simulation (virtual cannon shell) is not the same as a real cannon
or howitzer shell, but our model may serve to help us learn something about the
behavior of projectiles in a fluid.

24 If you were to create a tank or artillery game, you might need the idea of "wind" for game play.
The wind would act somewhat like the constant value we are subtracting from hvel.
25 The velocities stored in hvel and vvel are squared to be somewhat realistic. It actually is
true that if you double your velocity, then air friction is 4 times as great. Tripling your velocity
multiplies air friction by 9, etc.
26 Which is what friction does!
27 Conceptually, if not accurately.

 78

 Figure 5.18

 Experiment with different cannon elevation angles and muzzle velocities. For
example, try an elevation of 25 degrees and a muzzle velocity of 975 m/s. How does
your plot compare to figure 5.19 on the next page? It looks a lot like the profile of a
seven iron shot.28 This should tell us that even though the model is not perfect, we
are at least making a decent attempt at a simulation of air or fluid friction.

 Experiment with your own friction equations or with those you have researched.
Change the value of the air density/viscosity constant of 0.00000002. What
happens if you increase this value? What happens if you decrease this value? No
matter how you change the value of this constant, the new equations based on the
square of the velocities guarantee that the projectile will not fly the “wrong” way as in
figure 5.17. Once either vvel or hvel become zero, the friction associated with that
particular velocity also becomes zero (as it should!).

 A major part of learning to program depends on your own efforts at modifying
programs and experimenting with new ideas.

 As a challenge, research fluid friction and see if you can improve the model!29

28 For the golfers in the crowd… but seven irons don’t travel nearly this far! Att least mine don't.
29 This is a tough problem! Best wishes…

 79

 Figure 5.19

13) Research the concept of difference equations. This program uses difference
equations to solve for the trajectory of the projectile. Difference equations are
powerful computational tools for providing numerical solutions to difficult equations.
Difference equations also are a topic in calculus. You are doing some rather
sophisticated mathematics in this chapter!

Section 5.5 Polar Coordinates

 In algebra, we learned to plot points and graph equations using the Cartesian
rectangular coordinate system. This coordinate system, the brainchild of Rene
Descartes, established a link between points in a plane and ordered pairs of real
numbers. In sections 5.1 and 5.2, we plotted individual points and graphed 2D functions
using the traditional x-y Cartesian coordinate system. In section 5.3, we used
parametric equations to plot Lissajous/Bowditch curves… again using the Cartesian
system. Other coordinate systems also exist and we are not limited to Cartesian
coordinates.1

 One such system is the use of polar coordinates to map points on the plane. We
begin by establishing a fixed point, which we can refer to as the origin2 or pole. If we
then determine a length from the origin and an angle from the zero axis, we can plot any
point in the plane. The ordered pair looks like this: (r, q), where “r” is the length or
radius of the point and q is the angle from the zero p radian axis. Figure 5.17 illustrates
a point P in the polar coordinate system.

 Figure 5.20

1 Well, actually we are limited in computer graphics. The screen coordinates map nicely to (x,y)
ordered pairs. We CAN calculate using other systems and convert to screen coordinates. That is
what we’ll do in this section.
2 The origin is a reference point in the Cartesian system. We need a reference point in any
coordinate system we use.

 81

 Graphs in the polar coordinate system look something like: r = 4cosq + 2.
How do we plot them on a computer screen? We have to convert this equation into
Cartesian coordinates!3 We already know how to do this, though, from our parametric
equation work. If you’ll recall, in the parametric format we assumed a radius of r = 1.
In polar equations, we’ll not make this assumption and allow r to vary according to some
rule or equation. The conversions from polar to Cartesian coordinates are:

 x = r·cos(q)
 y = r·sin(q)

 When we combine these two conversions with an equation for r, such as r =
4cosq + 2, interesting things happen! As an analogy, you can think of a polar equation
as a fancy “radar” screen like you may have seen in movies featuring military radar
tracking incoming planes or missiles.4 The r value sweeps around according to angle q.
The variable r can shrink or lengthen according to a rule such as r = 4cosq + 2.
Together, r and q produce a polar graph. Enough talk; let’s try some Python code to
plot polar equations. New in this program will be a “keyboard” function that will allow us
to interact with the program and a “reshape” function that will help maintain the proper
shape5 of the graphics.

 Type in the listing below and save the program as pypolar.py or something
similar. Again, pay close attention to indentations and spelling!

PyPolar.py
Plotting Polar Equations

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from numpy import *
import sys

Set the width and height of the window with global variables
Set the axis range globally using global variable axrng
global width
global height
global axrng

Initial values
width = 400
height = 400
axrng = 7.0

def init():
 glClearColor(1.0, 1.0, 1.0, 1.0)

3 See footnote 1 in this section again.
4 This was also used as an analogy in the parametric equation section.
5 Also called the aspect ratio of the graphic figure. You may have noticed that if you resized or
maximized the graphics window in earlier programs, the plot figure will resize, but will look
distorted or stretched. We’ll fix this problem with a new function called def reshape:.

 82

GLUT Display Function
def plotpolar():
 glClear(GL_COLOR_BUFFER_BIT)

 # Plot axis lines for reference
 glColor3f(0.0, 0.0, 0.0)
 glBegin(GL_LINES)
 glVertex2f(-axrng,0)
 glVertex2f(axrng,0)
 glVertex2f(0,axrng)
 glVertex2f(0,-axrng)
 glEnd()

 # Plot polar equation for a Limacon
 glPointSize(2.0)
 for theta in arange(0.0, 6.28, 0.001):
 r = 4*cos(theta) + 2
 x = r*cos(theta)
 y = r*sin(theta)
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()

This is new... this is a reshape function so that the
aspect ratio of the graphics window will be preserved
and anything we draw will look in proper proportion
def reshape(w, h):

 # To insure we don't have a zero window height
 if h==0:
 h = 1

 # Fill the entire graphics window!
 glViewport(0, 0, w, h)

 # Set the projection matrix... our "view"
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 # Set the aspect ratio of the plot so that it
 # Always looks "OK" and never distorted.
 if w <= h:
 gluOrtho2D(-axrng, axrng, -axrng*h/w, axrng*h/w)
 else:
 gluOrtho2D(-axrng*w/h, axrng*w/h, -axrng, axrng)

 # Set the matrix for the object we are drawing
 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

 83

def keyboard(key, x, y):
 # Allows us to quit by pressing 'Esc' or 'q'
 if key == chr(27):
 sys.exit()
 if key == "q":
 sys.exit()

def main():
 global width
 global height

 glutInit(sys.argv)
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE)
 glutInitWindowPosition(10,10)
 glutInitWindowSize(width,height)
 glutCreateWindow("Polar Equations")
 glutReshapeFunc(reshape)
 glutDisplayFunc(plotpolar)
 glutKeyboardFunc(keyboard)

 init()

 glutMainLoop()

main()

End Program

 If everything is typed correctly and the program runs without error, you should
see something like Figure 5.21:

 Figure 5.21

 84

 Figure 5.21 is a nice rendering of a looping curve called a Limaçon. In the
exercises at the end of this section we’ll explore several “famous” polar equations.6

 Now we’ll look at the code for Figure 5.21 a bit more closely.7 The first few lines
are the familiar import statements required of all OpenGL programs, including the
numpy module for enhanced mathematical functions. They are followed by:

Set the width and height of the window with global variables
Set the axis range globally using global variable axrng
global width
global height
global axrng

Initial values
width = 400
height = 400
axrng = 7.0

 We are using global variables to set the initial width and height of the
graphics window. Also, we are using a variable called axrng to establish the x and y
axis ranges. axrng also will also be used by the gluOrtho2D statement in the def
Reshape(w, h): function. Following the global variable declarations, the initial
values of these variables are set. We are choosing a graphics window 400 x 400 pixels
and an axrng (axis range) of 7.0. Any changes made to these variables will result in a
“global” change of their values… far easier than searching through the code and
manually typing in new numbers!

 Now for the def plotpolar(): display function:

def plotpolar():
 # Clear the screen
 glClear(GL_COLOR_BUFFER_BIT)

 # Plot axis lines for reference
 glColor3f(0.0, 0.0, 0.0)
 glBegin(GL_LINES)
 glVertex2f(-axrng,0)
 glVertex2f(axrng,0)
 glVertex2f(0,axrng)
 glVertex2f(0,-axrng)
 glEnd()

 # Plot the polar equation for a Limacon
 glPointSize(2.0)
 for theta in arange(0.0, 6.28, 0.001):
 r = 4*cos(theta) + 2

6 And perhaps some not so famous curves as well.
7 As the text progresses, I’ll highlight only the new concepts or the use of “old” concepts in a new
way. I will not discuss every single line in detail because you are past the complete novice stage
by now! Also, I will begin using more remark statements to help explain the code.

 85

 x = r*cos(theta)
 y = r*sin(theta)
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()

 The def plotpolar(): function is not radically different from previous
programs, but notice the use of the axrng variable in drawing the axis lines within the
glBegin(GL_POINTS) section. It simply makes sense to draw axis lines based on the
ranges of the x and y axes. The other changes are found within the same
glBegin(GL_POINTS) code segment. We are defining the variables r, x, and y by
equations using theta (q). It is here, of course, that the polar graphics "picture" is
created and plotted.

 As stated in an earlier footnote, when the size of the screen is manually changed
by using the mouse, either by maximizing the windows or by dragging the edges or
corners, the drawing may become distorted. We will now “fix” this problem by using a
new function: def reshape(w, h):8

def reshape(w, h):

 # To insure we don't have a zero window height
 if h==0:
 h = 1

 # Fill the entire graphics window!
 glViewport(0, 0, w, h)

 # Set the projection matrix... our "view"
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 # Set the aspect ratio of the plot so that it
 # Always looks "OK" and never distorted.
 if w <= h:
 gluOrtho2D(-axrng, axrng, -axrng*h/w, axrng*h/w)
 else:
 gluOrtho2D(-axrng*w/h, axrng*w/h, -axrng, axrng)

 # Set the matrix for the object we are drawing
 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

End Reshape

 You’ve no doubt noticed the “w” and “h” in between parentheses in the reshape
function name? A quick glance at def main(): will show that we’ve actually defined
the reshape function using the glutReshapeFunc(reshape) command. GLUT and

8 Again, we try to give functions names that make sense.

 86

OpenGL both now know that any time the graphics window is resized, the reshape
function will be notified or called. The variables w and h are “passed” to the reshape
function by OpenGL/GLUT and are "caught" by the (w, h) variables in the function
name. w and h now contain the new values for the width (w) and height (h) of the
graphics window. This is great! We can use this new information to reset the drawing
“canvas” using gluOrtho2D so that our plot image is not distorted!

 The lines:

 if h==0:
 h = 1

keep us from making the resized window of zero height. This is important because we’ll
be using h as a divisor later. The glViewport(0, 0, w, h) command makes
certain that the entire graphics window contains the display. It is possible to use this
command to “peek” at small sections of a graphic plot within a window, but we want to
view the entire picture. Note the use of w and h again!

 As our programs become more complex, we become concerned about two
viewing concepts. The first is how we are going to draw the object itself and the second
is how we are going to place and view the object within the “world” contained by the
graphics screen. The next two lines concern themselves with the viewing “world” where
the object will eventually be placed.

 # Set the projection matrix... our "view"
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 A glMatrixMode() command is usually followed by glLoadIdentity().
The GL_PROJECTION parameter specifies the world view or projection matrix. If you
haven’t had linear algebra, you can think of a matrix as a system of equations that
govern the x, y, and z coordinates of our graphics world. Doing mathematics with these
equations (the projection matrix)9 manipulates how we see the world. We can translate
(or move laterally) the world, rotate the world, and make the world larger or smaller
(scale the world).

 # Set the aspect ratio of the plot so that it
 # Always looks "OK" and never distorted.
 if w <= h:
 gluOrtho2D(-axrng, axrng, -axrng*h/w, axrng*h/w)
 else:
 gluOrtho2D(-axrng*w/h, axrng*w/h, -axrng, axrng)

 Once we have the projection matrix set to the identity matrix (using
glLoadIdentity)10 we can then set the new x and y ranges using gluOrtho2D. We

9 Yes, I’ve seen the movies. No, it isn’t quite the same thing.
10 glLoadIdentity() resets the projection or modelview matrices back to the identity matrix…
which serves as a starting point for all future calculations. This is important for proper graphics
rendering.

 87

check to see if the width is less than or equal to the height and choose the correct
gluOrtho2D command based on this information (using the if statement). What do
you think else: means here? axrng is used once again to establish the new x and y
axis ranges and, more importantly, “fix” the distortion caused by stretching, shrinking, or
maximizing the window. Where do you think the “fix” occurs and how are w and h used?
What we are doing here is changing the aspect ratio of the graphics window according to
the new window dimensions.

 Once we have set the new window ranges and aspect ratios, we are ready to
redraw our plot. Since we want to draw our object or “model” again, we set the
glMatrixMode() to the GL_MODELVIEW matrix. Note the glLoadIdentity() after
glMatrixMode(GL_MODELVIEW). glLoadidentity() resets the GL_MODELVIEW
matrix so that all future translations, rotations, and scalings begin with the identity matrix.

 # Set the matrix for the object we are drawing
 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

 The reshape function is very useful because it can be inserted into nearly any
program. To see how this function operates, let’s look at two examples. Figure 5.22
demonstrates a resized graphics window (from figure 5.21) WITHOUT using the
reshape function.

 Figure 5.22

 Now look at figure 5.23 WITH the reshape function in place.

 88

 Figure 5.20

 We can find fault with fact that our axis lines did not “stretch” properly (wait for
the exercises!), but we can’t deny that the picture of the Limaçon now looks as it
originally did in Figure 5.21, albeit a bit smaller. You may be wondering why we don’t
have a gluOrtho2D command in the def init(): function? Since we declared the
reshape function as the glutReshapeFunc() in def main():, when the
pypolar.py program runs, OpenGL/GLUT assumes that the creation of the graphics
window constitutes a “reshaping” of the window and the reshape function is
automatically called or triggered by GLUT.11

 Also new in this program is keyboard interaction while the graphics display is
visible and the program is running. We have used keyboard input before, but that input
was prior to displaying a graphics window. This keyboard interactivity is a bit different.
We will be able to close the program, for example, while a graphics window is open by
pressing the “Esc” key or the “q” key.

def keyboard(key, x, y):
 # Allows us to quit by pressing 'Esc' or 'q'
 if key == chr(27):
 sys.exit()
 if key == "q":
 sys.exit()

 # End keyboard function

 As with the def reshape(w, h): function, take a look at def main():. You’ll
see that we’ve used glutKeyboardFunc(keyboard) to inform OpenGL/GLUT that
the keyboard function will provide keyboard interaction. Again, we don’t have to
actually call the keyboard function “keyboard”, but any name we use for our keyboard
routines must be defined in def main using glutKeyboardFunc(). You’ll notice
three variable parameters in parentheses for def keyboard. When a “normal”12 key is
pressed, the function named in glutKeyboardFunc is called and the value of the key

11 Or whatever function is name in the glutReshapeFunc() line in def main():
12 “Normal” keys refer to letters and numbers. Other keys such as arrows or “Page Up” are called
“special” keys and will be discussed later.

 89

is sent to this “keyboard” function and stored in the variable key. In this manner, the
value of the key may be processed or used by our program code. The x and y
parameters are not used here. They must be present within the keyboard function
parentheses, but we won’t discuss them at this time.

 Looking closely at the if statements, if either a chr(27) value for the variable
key is present (the ‘Esc’ key) or we press the letter q13, Python executes a
sys.exit()14 and the program ends. Any other single key press will be ignored and
the program will continue to run unless halted via the DrPython "Stop" button.

 We also could have written the keyboard "if" block of code as follows:

 if key == chr(27) or key == "q":
 sys.exit()

This construction basically says "if the 'Esc' key OR the 'q' key are pressed, then exit the
program". This form is a bit shorter, but is it easier to understand? Perhaps. Such
constructions are eventually up to the taste of the programmer.

 In def main():, the only major changes are in the use of the globals width
and height and the addition of the glutKeyboardFunc() and
glutReshapeFunc() commands. As stated previously, the use of global variables
will allow us to change the value of width and height at the beginning of the program
for convenience.

Section 5.6 Conclusion

 In this chapter you have been introduced to basic 2D plotting, function plotting,
parametric equations, simple physics simulations, and polar equations. Hopefully you
“saw” some similarities between graphing parametric and graphing polar equations as
well as some differences. I hope that you are beginning to see some of the interesting
possibilities available to you now that you know some programming fundamentals. In
the next chapter, we'll continue with some more complex 2D graphics and create some
fractal images.

Now let’s try some exercises to explore polar equations in more detail. In each
exercise, see if you can determine the symmetries (if any) displayed by the graphs.
Examples would be reflections in either the x or y axes (or both). Perhaps there are
other symmetries as well?

13 Only a lower case q will work… Python is very specific about this. If we want to use an upper
case Q, we would have to use a function to check for either letter OR we could write another if
statement and check for Q. We can use any letter as our exit key… q simply makes sense.
14 Remember the import sys line at the beginning of the program? sys.exit() is a
command provided by the sys module and stops the program immediately..

 90

Exercises

1) In the def plotpolar(): function, change the line r = 4*cos(theta) + 2
to r = 4*sin(theta) + 2. What happens? sin() and cos() are exactly
90 degrees (p/2 radians)"off" or out of phase with each other. Is it surprising,
then, that the graph is rotated 90 degrees? You can do similar rotations with
almost all the polar equations we'll be exploring in these exercises.

Note: Plot examples for exercises 2-15 are found at the end of these exercises. Also,
see the ***NOTE*** at the end of the plot examples.

2) Let’s visit our old friend the Cardiod, polar equation style.15 Change r =
4*sin(theta) + 2 in exercise 1 to:

 r = 2*a*(1 + cos(theta))

 Assign a value of 10.0 to the axrng variable and set a = 2.5.

3) Cayley’s Sextic.16 This curve is also called a sinusoidal spiral and is formed by a
cardiod rolling over another cardiod of the same size. The equation for Cayley’s
Sextic is:

 r = 4*a*cos(theta/3)**3

 An axrng of 10.0 is adequate and theta (in the for loop) should range from
 -6.28 to 6.28. Try 0.0 to 6.28 first and see why we need to extend theta. Try a
 value of 2.5 for the parameter a.

4) Cissoid of Diocles.17 The Cissoid curve demonstrates the vertical asymptote of

the tangent function. The polar equation is:

 r = 2*a*tan(theta)*sin(theta)

 Assign a value of 5.0 to the variable axrng. theta can range from 0.0 to
 6.28. Keep the step size at 0.001 unless you want to experiment a bit.

5) One of my favorite polar equations draws a Cochleoid.18 The cochlea is an

organ found in the inner ear and it resembles a snail in that it is spiral shaped.
The Cochleoid is not shaped much like a snail or a true spiral, but it is interesting
nonetheless. The polar equation for the Cochleoid is:

 r = a*sin(theta)/theta

15 Kokoska, Stephen. “Fifty Famous Curves, Lots of Calculus Questions, And a Few Answers”.
Dept. of Mathematics, Computer Science, and Statistics, Bloomsburg University.
16 Ibid
17 Ibid
18 Ibid

 91

 Here’s where it gets interesting. First, assign axrng = 1.0 and a = 1.0.
 Now let theta range from 0.0 to 6.28 and run the program. What happens?
 What caused the error? Notice that we are dividing by theta in the polar
 equation. If theta equals zero, we are dividing by zero… and that’s not good.
 When we divide by a variable, we must make certain that the value of the
 variable does not equal zero at any time. How do we fix this? We could start
 theta at 0.001… something like this:

 for theta in arange(0.001, 6.28, 0.001):

 But let’s learn something new. When we use from numpy import * at the
beginning of the program, the numpy module actually defines the variable pi for us
as 3.14159265359. This makes our task a bit easier. Try this for loop
statement:

 for theta in arange(-5*pi, 5*pi, 0.001):

 If pi has such a precise value (so many decimal places!) and we step by
 0.001, theta will never be zero. We’ll “step” right over zero! A good question
 to ask at this point might be “Why did you wait so long to tell us about the pi
 variable? We could have used it instead of 3.14!” That is indeed a good
 question. Anyway, I like the Cochleoid. Hint: Use glPointSize(1.0) for a
 finer plot. Also, experiment a bit with the arange for theta. Try from –pi to
 pi. Then try from -10.0*pi to 10.0*pi. How important is the loop range in
 arange?

6) Conchoid of de Sluze.19 The Conchoid of de Sluze is a looping curve that

displays x-axis symmetry. The polar equation for this curve is:

 r = b*cos(theta)/a - a/cos(theta)

 We are dividing by both a and theta, so we must not allow either to be assigned
 a value of zero. The range for theta can be from –pi to pi. The axrng
 variable may be assigned a value of 1.0. Let a = 1.0 and b = 2.0. Can you
 see the symmetry?

7) The Double Folium.20 If my Latin is not too terrible, folium means something

similar to “petal” as in a flower. So this polar equation draws a two-petal “flower”.
The equation is:

 r = 4*a*cos(theta)*sin(theta)**2

 As in the last exercise, let theta range from 0.0 to pi in the for loop. Let
 axrng = 2.0 and let a = 1.5. See if you can change the theta range in the
 loop and produce a “single folium”.

19 Ibid
20 Ibid

 92

8) Fermat’s Spiral.21 Individuals who practice omphaloskepsis have adopted this
interesting curve as their symbol. You’ll have to look up omphaloskepsis. Trust
me, it’s strange. Anyway, the polar equation is:

 r = a*sqrt(theta)

 Change the theta loop to look like this:

 for theta in arange(0.0, 10*pi, 0.0001):

 The value for theta can’t be less than zero (why?). The step size has been
 decreased to 0.0001 so we can watch the plot as it is drawn. Assign a = 1.0
 and axrng = 5.0. For the purposes of symmetry, add an additional
 glVertex2f command:

 glVertex2f(-x, -y)

 What happens when we add this additional glVertex2f? Try the program first
 with just the original glVertex2f(x,y) command and then try it with both.
 What kind of symmetry do you see? Does the Fermat’s Spiral figure at the end
 of the exercises use one or both glVertex2f commands? You can go back
 and explore some of the earlier exercises by inserting the additional
 glVertex2f(-x, -y) and see how the plots change. Some of the graphs are
 very interesting! Experiment with switching the positions of the x and y variables
 in glVertex2f. What happens?

9) Folium.22 In exercise 7, you were asked to attempt the creation of a single

folium. Now we’ll explore the polar equation for a folium:

 r = -b*cos(theta) + 4*a*cos(theta)*sin(theta)**2

 First, remember to comment out (using #) the glVertex2f(-x, -y) from the
 last exercise. We’ll use it again later, so don’t erase it. Set axrng = 1.0 and
 set parameter a = 0.25 and parameter b = 1.0. Let theta range from 0.0
 to pi. Now let’s experiment a bit. Try a = 1.0 for a trifolium! What happens if
 a = 0.5? Experiment with different values of a and b. For extra fun,
 uncomment the glVertex2f(-x, -y) command and see what happens.
 Again, consider the types of symmetry you see in the plots. When you are
 finished, don’t forget to once again comment out glVertex2f(-x, -y) for
 future exercises.

10) Freeth's Nephroid.23 This curve is a bit more kidney shaped than the nephroid

we explored in the parametric equation section. Freeth's Nephroid is plotted
using the following polar equation:

r = a*(1 + 2*sin(theta/2))

21 Ibid
22 Ibid
23 Ibid

 93

Let axrng = 3.0 and a = 1.0. theta should range from -2*pi to 2*pi.
You can experiment a bit by dividing theta by different values. For example, try
r = a*(1 + 2*sin(theta/3)) and have theta range from -4*pi to
4*pi in order to complete the plot. Check out the "Mod Freeth" figure at the
end of these exercises for the (theta/3) example.

11) The Hyperbolic Spiral.24 You may remember from your algebra class that the
equation y = 1/x is the classic form for a hyperbola. We are going to create a
spiral curve using a polar equation based on the classic hyperbola function.
Here is the equation:

r = a/theta

The polar form is very simple and doesn't involve trig functions. We must be
careful and not allow theta to equal zero. Try this for"\ statement:

 for theta in arange(0.0001, 10*pi, 0.001):

Notice how we start at 0.0001 and step by 0.001. This insures that we will never
"hit" zero in our loop. Set axrng = 1.0 and a = 1.0. For an interesting
modification, let theta range from -10*pi to 10*pi and see what happens.
Finally, uncomment the glVertex2f(-x,-y) statement (or add it after the
regular glVertex2f(x,y) it has been deleted). Run the program again. This
spiral is similar to a curve called the Lituus25 and is shown in the "Lituus" figure
at the end of these exercises. Think “symmetry”!

12) Rhodonea Curves.26 This curve is also one of my favorites. The polar equation
for plotting Rhodonea curves is:

r = a*sin(b*theta)

Don't forget to comment the glVertex2f(-x,-y)! Let theta range from 0.0
to 2*pi, set axrng = 1.0, a = 1.0, and b = 5.0. If b is an odd integer,
then there will be b lobes (folia?) in the curve. If b is even, there will be 2b lobes
in the curve. If b is an irrational number, then the number of lobes will be infinite
and the curve will never close on itself. We can't "do" irrational numbers in
Python, but we can let b equal a decimal number. Try b = pi (p is an irrational
number, but not on a computer… why?) and set theta to range from 0.0 to
20*pi. Neat, huh? The figure "20*pi" illustrates the parameter b = pi.

13) The Spiral of Archimedes.27 Perhaps the easiest polar equation of all, the Spiral
of Archimedes produces, well… a spiral. The equation couldn't be simpler:

r = a*theta

24 Ibid
25 Ibid
26 Ibid
27 Ibid

 94

Set a = 0.1, axrng = 10.0, and the theta range from 0.0 to 30*pi. Some
variations you can try are to let theta range from -30*pi to 30*pi and
uncommenting glVertex2f(-x,-y). Don't forget to "re-comment" this
statement prior to working the next exercises!

14) Butterfly Curves.28 Butterfly curves were discovered by Temple H. Fay at the
University of Southern Mississippi. They are graceful objects exhibiting
symmetry and complex loops and lobes. Whether they actually resemble
butterflies or moths is in the eye of the beholder, but they are undeniably
interesting. The polar equation for the Butterfly Curve is:

r = exp(cos(theta))-2*cos(4*theta)+sin(theta/12)**5

Let axrng = 5 and allow theta to range from 0.0 to 30*pi. The "Butterfly
Curve 1" figure at the end of the exercises illustrates this plot. Now try this
equation:

r = exp(sin(theta))–2*cos(4*theta)+sin((2*theta-pi)/24)**5

Use the same parameters as in the first butterfly curve. The results are shown in
the “Butterfly Curve 2” figure at the end of these exercises. What do you think
caused the 90 degree or p/2 rotation? Experiment with either or both of these
equations. Change the coefficients and the range for theta and see what you
can create! Butterfly curves have a unique beauty and grace, making them
particularly pleasing to the eye. Research Butterfly Curves online and see what
you can learn. Perhaps you can create your own Butterfly Curve?

15) Chrysanthemum Curve.29 The Chrysanthemum Curve was also discovered by
Temple Fay, so we can perhaps expect it to be somewhat similar to the Butterfly
Curve. A chrysanthemum is a flower and the curve bears some resemblance to
the petals on a flowering plant. The polar equation for a chrysanthemum curve
is:

 r = 5*(1+sin(11*theta/5))-(4*sin(17*theta/3)**4)*(sin(2*cos(3*theta)-28*theta)**8)

 This is a long and complicated equation, so check your typing carefully! For best
 results, set axrng = 10.0 and let theta range from 0.0 to 21.0*pi. Feel
 free to experiment with the equation and see if you can create a new species of
 flower! Later we may revisit this polar equation when we work with 3D curves!

16) Now it’s time for you to experiment on your own. We are at the end of chapter 5
and you know enough to try something of your own creation. Use the programs
in this chapter and the exercises at the end of each section as models. Try to
create a “work of art” using different colors, symmetry, and different equations.
Feel free to change the graphics window size and shape as well as
experimenting with the background color, glPointSize and anything else you

28 Pickover, Clifford A. (1991). "Computers and the Imagination: Visual Adventures Beyond the
Edge." St. Martin's Press: New York. Pages 19-21.
29 Bourke, Paul. http://astronomy.swin.edu.au/~pbourke/curves/chrysanthemum/

 95

can think of doing. For example, you might try to draw a “butterfly” on a
“chrysanthemum”? Use your imagination… a computer is an imagination
machine. What we can imagine, we can create!

Figures for Exercises 2-15

 Cardiod Cayley’s Sextic

 Cissoid of Diocles Cochleoid

 96

 Conchoid of de Sluze Double Folium

 Single Folium Fermat’s Spiral

 Folium Trifolium

 97

 Freeth’s Nephroid Mod Freeth

 Hyperbolic Spiral Lituus

 Rhodonea Curves 20*pi

 98

 Spiral of Archimedes Butterfly Curve 1

 Butterfly Curve 2 Chrysanthemum Curve

NOTE If you are having problems creating plots that look like the examples figures
on this and previous pages, make certain that you:

a) Pay attention to the suggested range for theta, the axrng value, and the
values for any parameters such as a, b, c, etc.

b) Make certain that you have typed in the proper equation for r, and

c) Make certain that you have not altered the equations for x and y. They should

be (for polar equations):30

 x = r*cos(theta)
 y = r*sin(theta)

30 You CAN alter these equations, but you are no longer mapping polar equations to the standard
Cartesian x-y coordinate system. The results of changing these equations can be bizarre!

Chapter 6 Patterns and Chaos in 2 Dimensions

 This chapter will build on the skills we’ve learned in previous chapters and
introduce you to some concepts that, prior to the computer age, were not available to
mere mortals. One of the basic foundations of math and science is the search for
patterns, both in numbers as well as in nature. Patterns imply prediction and prediction
implies security. As humans, we seem to be programmed to seek patterns in our daily
activities and it comes as no great surprise that we find many patterns pleasing to the
eye. Indeed, a lack of patterns in behaviors, artwork, or natural events can be very
disturbing! In Section 6.2, we’ll explore some patterns that could easily be considered
mathematical art. First, though, we need to make your programming life a bit easier.

Section 6.1 PySkel

 You may be thinking that we are doing a lot of typing to display some relatively
simple graphics. I might disagree with this, but I understand your viewpoint. With that in
mind, let’s see if we can make the programming task a bit easier for you. If you haven’t
already noticed, each program you have written is similar in structure. Let’s build on that
concept and create a skeleton program that we can use for future exercises. As we add
new concepts and ideas that we want to incorporate in all our coding examples, we’ll
add to the skeleton program.

 Open the last program you wrote from the previous chapter, click “File” and
“Save As” and rename the program pyskel.py.1 Then “gut” the program, leaving the
following code:

PySkel.py

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from numpy import *
import sys

Set the global width, height, and axis ranges of the window
global width
global height
global axrng

Initial values
width = 500
height = 500
axrng = 1.0

def init():
 glClearColor(1.0, 1.0, 1.0, 1.0)

1 In tribute to Prof. George Francis's “illiSkel” programs.

 100

def plotfunc():
 glClear(GL_COLOR_BUFFER_BIT)

 # Plotting functions

 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()

def reshape(w, h):

 # To insure we don't have a zero height
 if h==0:
 h = 1

 # Fill the entire graphics window!
 glViewport(0, 0, w, h)

 # Set the projection matrix... our "view"
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 # Set the aspect ratio of the plot so that it
 # Always looks "OK" and never distorted.
 if w <= h:
 gluOrtho2D(-axrng, axrng, -axrng*h/w, axrng*h/w)
 else:
 gluOrtho2D(-axrng*w/h, axrng*w/h, -axrng, axrng)

 # Set the matrix for the object we are drawing
 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

def keyboard(key, x, y):
 # Allows us to quit by pressing 'Esc' or 'q'
 if key == chr(27):
 sys.exit()
 if key == "q":
 sys.exit()

def main():
 global width
 global height

 glutInit(sys.argv)
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE)
 glutInitWindowPosition(100,100)
 glutInitWindowSize(width,height)
 glutCreateWindow("PySkel")
 glutReshapeFunc(reshape)
 glutDisplayFunc(plotfunc)

 101

 glutKeyboardFunc(keyboard)

 init()
 glutMainLoop()

main()

#End of Program

 This pyskel.py skeleton can serve as a basis for writing new programs. You
should note that all the main ingredients we need for proper program execution are
included in the code. The import statements, the global variable definitions, the def
init():, def reshape():, def plotfunc():, def keyboard():, and def
main(): functions are ready for our use and/or modification. As a matter of fact,
pyskel.py will run on its own, although the output won’t be very interesting.2

 Using pyskel.py as a skeleton or template is simple. All you do is load
pyskel.py into DrPython or your programming editor, change the name by using the
“File" and "Save As” menu item, and modify the def functions with new commands (if
needed). Certain def functions, such as def reshape():, may not change at all.3
Other functions, such as def plotfunc(): may be renamed and completely
overhauled. Still other functions (as yet unwritten) may be ignored and can be
commented out. In any event, pyskel.py should save you a considerable amount of
work. As we add new items such as mouse motion, zooming, menus, etc. we can add to
pyskel.py.

 Remember to keep the original pyskel.py code intact by immediately
renaming the skeleton program as soon as you load it. Carefully compare the new
program listing with the "old" (and hopefully renamed!) pyskel.py listing and make any
needed changes. Such changes may include modifications to global variables such as
axrng and/or height and width as well as changes in def functions and
modifications to def main(): to reflect new functions and/or new function names.
Now let’s put pyskel.py to work!

Section 6.2 Some Interesting Patterns

 The inspiration for this particular topic comes from A.K. Dewdney’s “The
Armchair Universe”.4 Dewdney uses the phrase “Wallpaper for the Mind” as the title to
the chapter, but I don’t know much about wallpaper. Let’s simply say that we are going
to create some interesting patterns using our computer. I think you’ll enjoy the example
program and the possibilities it represents. After presenting the program listing, I’ll
attempt to explain how it works and the exercises will allow you to explore the
mathematics of creating your own unique patterns.

2 Try it! Before you do, though, try to guess what the output will be.
3 NOTE*** If your program doesn’t display properly, check the def reshape(w,h): function
carefully, particularly the glMatrixMode commands!
4 Dewdney, A. K. (1988). “The Armchair Universe: An Exploration of Computer Worlds”. W. H.
Freeman and Company, New York. Pages 15-26.

 102

Load pyskel.py and "Save As" pymathart.py or something similar. Change the

code in the listing so that it matches the following program listing:

PyMathArt.py

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from numpy import *
import sys

Set the global width, height, and axis ranges of the window
global width
global height
global axrng

Initial values
width = 500
height = 500
axrng = 10.0

def init():
 glClearColor(1.0, 1.0, 1.0, 1.0)

def plotmathart():
 glClear(GL_COLOR_BUFFER_BIT)

 for x in arange(-axrng, axrng, 0.04):
 for y in arange(-axrng, axrng, 0.04):
 r = cos(x) + sin(y)
 glColor3f(cos(y*r), cos(x*y*r), sin(r*x))
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()

def reshape(w, h):

 # To insure we don't have a zero height
 if h==0:
 h = 1

 # Fill the entire graphics window!
 glViewport(0, 0, w, h)

 # Set the projection matrix... our "view"
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 # Set the aspect ratio of the plot so that it

 103

 # Always looks "OK" and never distorted.
 if w <= h:
 gluOrtho2D(-axrng, axrng, -axrng*h/w, axrng*h/w)
 else:
 gluOrtho2D(-axrng*w/h, axrng*w/h, -axrng, axrng)

 # Set the matrix for the object we are drawing
 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

def keyboard(key, x, y):
 # Allows us to quit by pressing 'Esc' or 'q'
 if key == chr(27):
 sys.exit()
 if key == "q":
 sys.exit()

def main():
 global width
 global height

 glutInit(sys.argv)
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE)
 glutInitWindowPosition(100,100)
 glutInitWindowSize(width,height)
 glutCreateWindow("Math Art Patterns")
 glutReshapeFunc(reshape)
 glutDisplayFunc(plotmathart)
 glutKeyboardFunc(keyboard)

 init()
 glutMainLoop()

main()

#End of Program

When you run this program it may take several seconds or even minutes for the
entire graphics picture to display depending on the speed of your computer.5 The
reason for this slow execution is that we are "visiting" every pixel or dot within the
graphics window and applying a mathematical function to each pixel. We then have the
Python code decide the color for the pixel by applying another set of functions. When
finished, the output for this program should look something like Figure 6.1 on the next
page.

5 Some of the graphics we'll create may take some time to complete. To put this into perspective,
20 years ago in our "old" Apple lab a graphic that now takes a minute to draw might have taken
several hours or even days to finish and the completed picture would have been in glorious green
and black. Hopefully any short wait time we suffer will be well worth the picture we draw!

 104

 Figure 6.1

 What do you think? We haven’t really added much to the programs from the
previous chapter and look what happened! If you look at the graphic output long
enough, you can even see hints of a layered or 3D effect even though no such structure
was intended. Let’s see if we can understand how such interesting patterns were
created. I am going to preface the explanation by saying that some of the pattern that
you see is caused by an artifact introduced by the nature of the graphics screen. We
can only represent anything we draw by using single pixels. This makes is virtually
impossible to draw perfect straight lines and curves. There will always (almost) be some
jagged edges or "jaggies" that will cause some interesting patterns in plots such as
Figure 6.1. You might want to look up "aliasing" and "Moire Patterns" online?

 First, we set the global variables as follows:

width = 500
height = 500
axrng = 10.0

If you look at the program listing, you’ll find that the only major changes are found
in the display function, named def plotmathart():, so let’s look there.

def plotmathart():
 glClear(GL_COLOR_BUFFER_BIT)

 105

 for x in arange(-axrng, axrng, 0.04):
 for y in arange(-axrng, axrng, 0.04):
 r = cos(x) + sin(y)
 glColor3f(cos(y*r), cos(x*y*r), sin(r*x))
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()

End Function

 The function begins as usual by clearing the graphics windows and specifying
that we’ll be plotting points by using glBegin(GL_POINTS). We then encounter a
nested loop structure. The "top" or “outer” loop, for x in arange(-axrng,
axrng, 0.04): begins with the leftmost column of pixels (-axrng) and eventually
chooses every single column of pixels from left to right until it finishes at the far right of
the screen (axrng). The variable x 6 begins with –axrng and ends with axrng,
stepping by 0.04. You may be wondering why 0.04 was chosen as the step? The
width of the graphics window is 500 pixels (width = 500) and the value for axrng =
10.0. This means that the screen coordinates are from -10.0 to 10.0 in both the x
and y axes, for a total width (and height) of 20.0 graphic screen units. This 20.0 unit
width and height must be mapped into a 500 pixel window screen width and
height. Doing a little arithmetic tells us that 20.0/500 = 0.04. So, if we step by 0.04,
we’ll hit every pixel column and row… in other words, every single pixel or "dot" in the
window! So, according to the screen coordinates,7 each pixel in the graphics window
translates to a distance of 0.04 square units.8

 The outer for x loop visits every vertical column from left to right (-axrng to
axrng), but in order to complete the journey to every single pixel, we must also choose
individual rows. The "inner" loop, for y in arange(-axrng, axrng, 0.04):
accomplishes this task. The two loops work together as follows: for every value of x
chosen (an individual column), the values of y range from the bottom of the window to
the top of the window (-axrng to axrng), hitting each row in turn. When the y loop has
finished its task, the next value (column) for x is chosen and the y loop repeats. You
can actually see this happen on your screen. When you run this program, notice how
the screen fills from left to right a column at a time. You may even be able to see the
bottom to top filling? If you can't see the filling, place an additional glFlush()
statement immediately after the glVertex2f() statement. What do you think this
does?

6 We don't have to use x as our variable… we can choose any variable we want (within reason),
but since we are using the variable to store horizontal screen positions, x makes sense. The
same reasoning holds for y.
7 The coordinates of the graphics window are pixel based. A width of 500 means that the
coordinates for the x axis range from 0 to 500 pixels. Using gluOrtho2D changes the way we
address each pixel and produces the axrng screen Cartesian coordinate system..
8 You may wonder what happens if we change axrng or the width and height of the graphics
window? Good question! See exercise 1.

 106

 When we visit each pixel on the graphics screen, we must have the computer
decide what to do with the selected pixel. The only raw information we have available
are the x and y coordinates (in axrng or screen units). The program must somehow
transform the x and y coordinate values into something new. It may not seem as if
having such a small amount of information could lead to anything graphically interesting,
but this is exactly how Figure 6.1 was produced. Let’s see how the “magic” was done:

 r = cos(x) + sin(y)

 First, we use the x and y information to obtain a single value r by simply adding
the cos(x) and the sin(y). This equation is nothing special. It was simply “made up”
on the spur of the moment. What we do with the value of r is where the graphic design
"magic" is formed.

 glColor3f(cos(y*r), cos(x*y*r), sin(r*x))

 We use the value for r, along with the x and y screen coordinates, to determine
the color of each individual pixel. The trig functions in glColor3f are periodic, which
accounts for the swirling multicolor patterns in Figure 6.1. The def plotmathart():
function finishes in a familiar fashion with glVertex2f(x,y), glEnd(), and
glFlush().9 The only other changes are in def main(): to indicate the graphic
window caption in glutCreateWindow and the name of the display function in
glutDisplayFunc.

 In summary, we did the following:

1. Used nested loops to visit each pixel in the graphics window.
2. Used the screen (axrng) x and y coordinates in a mathematical function to

obtain a value, which we stored in the variable r.
3. Used the variable r, along with the x and y coordinate values, to produce a pixel

color.

 We’ll use these steps and this concept again. When you think about it, producing
any graphics in a window involves working with individual pixels and changing their
colors!

Exercises

1) We used a step of 0.04 to visit every pixel in our graphics window. The 0.04 step

size was calculated based on the specific width, height, and axrng of this
particular example. If we change the width, height, and/or axrng, we’ll need to
recalculate the step size. To see why, set width = 600 and height = 600 and
run the program again.10 What did you see? How did the white lines get there?

9 Try running the program by commenting glFlush() with a # sign. Does it work? Are there
any problems when you resize or move the graphics window?
10 We keep width = height for a square window. This is “forced” on us by the reshape
function. You can set the width and height to different values, but only a square area will plot.

 107

Reset the width and height back to 500 and set axrng = 20.0. Run the
program again.11 This time we did not get white lines even though we increased the
screen range from -20.0 to 20.0. But is the step size correct? Perhaps we are doing
too much work and using a step size that is too small? This will not produce an
incorrect plot, but it will increase the time it takes to complete the graphic display.
Set the step size in both loops to 0.08 and run the program again. The execution
time is much faster and the display is the same. It turns out that 40.0/500 = .08.12
OK, now for the question. Is there a way for Python to automatically calculate the
step size based on the values for width, height, and axrng? How might you do
this?

2) If you were stumped by exercise 1, here are a couple of hints. We might first ask the
question “How did we calculate the ideal step size manually?” Then we could break
down the manual solution into steps and convert each step into Python code.13
Many problems can be solved in this manner.14 See if you can modify the
pymathart.py program to automatically calculate the step size. How would you
know if it works properly?

3) Here’s a possible solution to calculating the step size automatically. First, add the
following global variable underneath the global width and global height
variables at the beginning of the program:

 global stepsize

 Then underneath the "axrng =" assignment statement, add the following
calculation:

 stepsize = (2.0*axrng)/width

 We multiply axrng by 2.0 because axrng takes on all values from -axrng to
+axrng, which is exactly twice the value of axrng. We divide by width since the
width and height are equal and represent the number of horizontal and vertical
pixels in the graphic window. The result is the proper stepsize for these values.

 Finally, in both for loops, change the step value (probably 0.04) to the variable
stepsize as follows:

 for x in arange(-axrng, axrng, stepsize):
 for y in arange(-axrng, axrng, stepsize):

11 This causes us to have a “zoomed out” view of the plot.
12 40.0 is the total axrng from -20.0 to 20.0.
13 Of course, Python isn’t the only language! Some programming languages are better than
others at a particular task. The “J” language is excellent for mathematical and matrix
programming, for example. Ruby is outstanding for web programming through Rails.
14 No claims are made for this method being the best or most elegant method for solving all
problems with a computer. It seems to work in most cases, though, and such an approach is
generally understandable. There are computer wizards who seem to be able to solve problems
better than most mortals. I don’t understand the ways of such programming gurus and as Tolkien
said, “Do not meddle in the affairs of wizards…”

 108

Now run the program with axrng = 10.0 to verify that you can plot the same
graphic as in Figure 6.1.15 Now try axrng = 5.0 followed by axrng = 15.0.
Also try various values for width and height (keeping both variables equal to the
same value for a square plot window).16 Personally, I prefer axrng = 15.0, but
you are free to disagree!

4) Now let’s experiment with the r equation and see what we can discover. Let axrng
= 10.0 and alter the r equation as follows:

 r = cos(x) + sin(y) - tan(x*y)

What do you think? Now try:

 r = cos(x**2) + sin(3*y) - tan(x*y/4)

Weird!? Try your own equations. Experiment! I’m certain you can do better than I
can at creating your own artistic patterns! You can also use sqrt(), log(), and
exp() as functions. If you generate an error message and the program doesn't run,
more than likely you are supplying a function with a value that causes that function to
be undefined, such as the square root or log of a negative number or trying to take
the log of zero. One way to fix such problems is to use the abs()17 function as
follows:

 r = cos(x)**2 + sin(y/3) – sqrt(abs(x*y))

Note the use of abs(x*y) within the sqrt function to insure that x*y is never a
negative number.

5) What if we want to use a function such as log(r)? The variable r can never be
zero because log(0) is undefined. We can fix this problem by using an if
statement. Try this r equation without any other program modifications:

 r = cos(x)**2 + sin(y/3) - log(abs(x*y))

The program acts as if it's going to run and then it stops. If you look at the console
window below the code, you'll see that Python "flags" this statement and tells you
that we've generated an "OverflowError: math range error". Why?
Because at some point abs(x*y) within the log() function equals zero! We can
fix this problem by either making certain that abs(x*y) is never zero or (better) we
can simply ignore or skip the r equation if abs(x*y) equals zero.

15 You must use 10.0 or some other floating point value that displays a decimal. Otherwise the
division in the stepsize = (2*axrng)/width will result in a value of zero (an integer).
16 You might change the “height =” statement to height = width. That way you only have
to change one number to adjust the size of the graphics window.
17 Absolute value. The log of zero is a bit more problematic. One solution would be to simply
make certain the variable or statement within the log() function is never zero. The best solution
is to use an if statement so that you only execute the log() function when the statement is not
zero. See exercise 5!

 109

Here's how. After the for y loop (shown), modify the code as follows:

for y in arange(-axrng, axrng, stepsize):

 if x <> 0:
 r = cos(x)**2 + sin(y/3) - log(abs(x))

 Note the indent in the r equation after the if statement.18 An English translation of
this code is as follows: IF the value for x is NOT equal to zero (we used "!=" for
NOT equal in the Super-3 program. If you will recall, I told you then that "<>" also
means NOT equal), then execute the r equation. This is exactly the behavior we
want! We want to have Python evaluate an equation only if the equation is “legal”. If
x IS zero, then log(abs(x)) is NOT defined. The if statement “catches” this
problem and skips the r equation when x = 0. Now if you run the program, you
should be able to generate a graphics plot. The drawback to using an if statement
in this manner is that, depending on which math functions you use, you may have to
modify the conditional every time you change the equation to avoid encountering an
undefined value. This usually isn't difficult, though.19

6) Try this slightly modified equation for r:

 r = cos(x/y)**2 + sin(y/3) - log(abs(x))

When you run the program, it doesn't work! Even with the if statement to avoid x
== 0, we still get an error. Can you see why the error is generated? Look at the
cos(x/y) command. What happens if y = 0? We can fix this problem by using a
more complex if statement as follows:

 if x <> 0 and y <> 0:

 r = cos(x/y)**2 + sin(y/3) - log(abs(x))

This conditional block of code executes only if both x AND y are NOT equal to
zero.20 Run the program again. This time it should work and you may see an
interesting pattern!

7) Now let’s turn our attention to the line of code that determines the color of each pixel.
We’ll find out that this code statement is no less important than the equation for r in
determining the pattern plotted in the graphics window! First, let’s return everything
back to its original state so that we can once again plot a pattern resembling Figure
6.1. You can refer to the global variables and def plotmathart(): code listed
immediately after Figure 6.1 if needed. Run the program to make certain you can
plot Figure 6.1 again.

Let’s modify the glColor3f statement as follows:

18 Any and all lines indented at this level after an if statement are included in the if block.
19 You might have to think a bit? Ouch.
20 Another possibility is if x <> 0 or y <> 0: Would using the or logic work properly in this
situation? Why or why not?

 110

 glColor3f(cos(r), cos(r), cos(r))

 After running the program, you should see something like the Exercise 7 plot at
the end of these exercises. What happened to all the colors, swirls, curves, and 3D
effects? The cos(r) function varies according to the value of r, but since all 3
colors21 are varying at the same time and producing the same values, the effect is to
produce shades of white, gray, and black. Apparently we need to make certain that
the red, green, and blue color values vary at different rates or by different functions in
order to create colors and patterns like we saw in Figure 6.1.

8) Building on the previous exercise, let’s explore some “color” functions. Try this:

 glColor3f(r*r, x*r, y*x*r)

Sadly, the plot looks like something from the ‘60’s… we used to call it “modern art”.
Unfortunately it’s no longer “modern” and whether it was ever “art” is certainly open
for debate. However, you probably noticed that the underlying pattern was similar to
the Exercise 7 plot. Evidently the intrinsic pattern is produced by the trig functions in
the r equation,22 but both the r equation and glColor3f statements work together
to produce the intricate designs and colors found in Figure 6.1.23 An illustration of
this plot is found in the Exercise 8 figure at the end of these exercises.

9) Keeping the r equation the same as in the original program, modify the glColor3f
command as follows:

 glColor3f(tan(r*r), sin(x*r)*cos(r*y), sin(y*x)*tan(r))

This plot is much better (in my opinion) than the previous example in exercise 8.
Feel free to try other math expressions such as log(), sqrt(), and exp(). If you
get an error message, remember that you might be trying to supply the math
function(s) with an illegal or undefined value. You know how to fix that problem,
don’t you? The Exercise 9 plot at the end of these exercises demonstrates this
glColor3f statement.

10) One more example and I’ll let you explore on your own. Set axrng = 5.0 and

modify the r equation as follows:

 r = cos(x)**2 + sin(y*y)**2 + tan(x*y)**2

Then change the glColor3f command to:

 glColor3f(x*y*sin(r), sin(x*r*y)*cos(r*y), sin(y*x)*cos(r))

The plot generated by these statements is a bit different than the previous patterns.
Do you see any symmetry? If so, what forms of symmetry did you discover? Pattern

21 glColor3f(red, green, blue)
22 There aren’t any trig functions in this glColor3f statement!
23 Also aliasing and "jaggies".

 111

symmetry? Color symmetry? Both? Again, an example of this plot is found in the
Exercise 10 Figure at the end of these exercises.

11) Now go ahead and try to create some patterns of your own. When you do your
computer experiments, see if you can discover the symmetries in the plot.24 Some of
the symmetries may be subtle and could involve both pattern and color. What math
functions result in symmetry and which functions cause the symmetry to break
down? Do you notice any 3D effects? What do you think causes the illusion of
depth?

Figures for exercises 7, 8, 9, and 10

 Exercise 7 Exercise 8

 Exercise 9 Exercise 10

24 If there is a lack of symmetry, do you find the pattern disturbing in any way?

Section 6.3 The Chaos Game

 We aren’t really going to play a game in the sense that there will be a winner and
a loser, but we are going to simulate some aspects of a game using chance and rules.
But what is chance? We usually use the word "random" to describe a chance
occurrence, but what do we mean by random? One possible definition is that random
means unexpected. This definition is not very valid because there are many unexpected
events that are not random. Did you ever receive a card, email, or letter that you didn't
expect? Assuming that the message was from someone in your family or from a friend,
it was hardly a random event. This individual purposely sent you the message. We
might also define random as "unpredictable". It is true that random events are
unpredictable, but unpredictable events are not necessarily random. As an example,
I might ask "Who will win the World Series next year?" I don't know and neither do you.
As I write this, my favorite baseball team, the St. Louis Cardinals, just finished winning
the 2006 World Series. I could not have predicted this outcome with any certainty even
a month ago. Yet the championship was not simply a random occurrence.
Unpredictable and unexpected certainly, but it was not random. A multitude of
sequential events (hits, runs, errors, outs, managerial decisions, wins, losses, etc.) and
parallel events (other teams winning or losing) led to the final outcome.

 For the purposes of this chapter, what do we mean by a random event? We
must first specify all the possible events that can occur. Once we have specified all
possible events that can take place, we then supply the condition that each of the
possible events has an equal probability or chance of occurring. Furthermore, the
occurrence of any single event is not affected by past events, nor will its occurrence
affect future events.1 Once we establish these rules, we can then say that an event is
random and therefore we can now also say the event is unpredictable. An example of a
random event would be the toss or roll a fair die. There are six possible events that can
occur; one event corresponding to each face or number on the die. Each of the six
faces or numbers has an equal chance or probability of being "thrown". The occurrence
of a "3" on one toss of the die, for example, was not based on any previous number
being thrown, nor will this occurrence of a "3" have any influence on the next roll or toss
of the die.

 While we can't predict the next roll of the die, we can use the mathematical laws
of probability to predict that over a large number of rolls (millions, billions, trillions!), we
would expect that each number on the die would appear with nearly equal frequency.
This definition of random is very compressed and certainly not complete enough for a
mathematician, but it should serve our purpose here. The question now becomes, "How
can Python generate a random number?" The short answer is that it can't. Computer
languages are very much deterministic. In other words, computer languages are based
on algorithms (code recipes) and formulas. We can, however, simulate random
numbers in code by using rather complex formulas. Such formulas are inherent in the
Python random module and the numbers they generate are called "psuedo-random"

1 Such events are called independent events in statistical jargon.

 113

numbers. For all practical purposes, we can treat such pseudo-random numbers as
random.2

 The Chaos Game3 involves rolling a die and applying a rule based on the random
outcome of the die. Imagine that you have placed 3 points on a large poster board and
these 3 points determine the vertices of a triangle. The points can form any triangle
shape, but let’s assume that the triangle is at least isosceles if not equilateral.4 Then,
completely at random, choose any new point (call it P1) on the poster board, either inside
or outside the triangle. So, at this point we have the vertices of a triangle plotted on our
imaginary poster board and we have a fourth point P1 randomly drawn in another
location on the poster board.

 Now comes the interesting part. Label the vertices of the triangle 1, 2, and 3
respectively. As we roll the die, let an outcome of 1 or 2 “choose” or map vertex 1. An
outcome of 3 or 4 will map vertex 2, and an outcome of 5 or 6 will map vertex 3. Since
this is an imaginary exercise (at this point), we can even use an imaginary 3 sided die,
with each side corresponding to one of the 3 vertices.5 The rule we apply is as follows:
starting with the first random (non-vertex) point P1, role the die and plot the midpoint
between P1 and the vertex chosen by the die. Label this point P2. P2 now becomes the
new starting point. Roll the die again and choose a new (or same… this is random!)
vertex based on the outcome of the roll. Plot the midpoint from P2 to the new vertex and
label this point P3. P3 becomes the new starting point. Roll the die again to choose the
next vertex. Once again, plot the midpoint between P3 and the new vertex and label this
point P4. This process continues until you become bored or the universe ends.

 Figure 6.2 illustrates the first few moves of the Chaos Game. You can probably
follow along with the sample game progress.6 Starting with point P1, the die was rolled
and vertex 1 was selected.7 The midpoint between P1 and vertex 1 was plotted and
labeled P2. Which vertex was chosen next by the die? That’s correct, vertex 2. Notice
that P3 is the midpoint between P2 and vertex 2. Then vertex 3 was chosen and P4 was
plotted as the midpoint between P3 and vertex 3. Vertex 3 was “rolled” again, and P5,
the midpoint between P4 and vertex 3, was plotted.

 Here’s the important question. What happens if you continue this game for 100
rolls of the dice? How about 1000 rolls? How about 10000? How about an infinite
number of rolls? Will we see anything interesting or will the poster board fill with a
random jumble of dots? I don’t have time to do this as a “real” exercise and neither do
you, but our computer can be a willing lab assistant and help us explore this problem as
a virtual exercise. The trick is to translate the game instructions into Python code. The
listing following Figure 6.2 is one possible solution. Go ahead and carefully type in the
code now, paying close attention to spelling, punctuation (where needed), and

2 Look up random number generators online. See if you see the phrase "linear congruential"
anywhere. Also look up "Wolfram Rule 30".
3 Barnsley, Michael (1989). "Fractals Everywhere". Boston: Academic Press.
4 This is merely for convenience and appearance. We don’t HAVE to choose vertices that form
an equilateral triangle.
5 A 3-sided die makes our imaginary game a bit easier. However, there can be no actual 3-sided
die. Why? If we do this as a “real” exercise, you can use a conventional 6-sided die as described
in the text.
6 Follow the arrows!
7 Either by a “1” on our imaginary die or a 1 or 2 on a “real” die.

 114

indentation.8 I strongly recommend that you use the pyskel.py program template we
created in section 6.3 to reduce your workload. Load and then immediately save
pyskel.py (using “File" and "Save As”) as pychaosgame.py.9 Don't worry if you don't
understand all of the code at this point. We'll go through the new concepts in detail after
we get the program running correctly.

 Figure 6.2

PyChaosGame.py

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from random import *
import sys

Set the global width, height, and axis ranges of the window
global width
global height
global axrng

8 I know you know this by now, but it doesn’t hurt to mention it again. Most Python programming
errors are simple mistakes in spelling and/or indentation.
9 You know this already, but by immediately saving the pyskel.py program under a new name,
we protect the pyskel.py template program from harm. Computer savvy students can find
pyskel.py using the File Explorer program (right-click “Start” and select “Explore”) and can
change the attributes of pyskel.py to “Read-only” so it can’t be erased or overwritten by accident.
To do this, right-click the pyskel.py Python icon, select “Properties” and check the “Read-only”
box at the bottom of the dialog window. Linux users can do something similar using either a
command line chmod statement or by using the Linux file explorer equivalent.

 115

Initial values
width = 500
height = 500
axrng = 2.0

def init():
 # White background
 glClearColor(1.0, 1.0, 1.0, 0.0)

 # Black Plot
 glColor3f(0.0, 0.0, 0.0)

def plotfunc():
 # Store the triangle vertices in an array
 verts = [[0.0,2.0],[-2.0,-2.0],[2.0,-2.0]]

 # Choose an initial point... any point
 x = -1.5
 y = 0.75

 glClear(GL_COLOR_BUFFER_BIT)

 for n in range(0,100):
 v = randint(0,2)
 x = (x + verts[v][0])/2
 y = (y + verts[v][1])/2

 if n > 30:
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()

def reshape(w, h):

 # To insure we don't have a zero height
 if h==0:
 h = 1

 # Fill the entire graphics window!
 glViewport(0, 0, w, h)

 # Set the projection matrix... our "view"
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 # Set the aspect ratio of the plot so that it
 # Always looks "OK" and never distorted.
 if w <= h:
 gluOrtho2D(-axrng, axrng, -axrng*h/w, axrng*h/w)
 else:

 116

 gluOrtho2D(-axrng*w/h, axrng*w/h, -axrng, axrng)

 # Set the matrix for the object we are drawing
 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

def keyboard(key, x, y):
 # Allows us to quit by pressing 'Esc' or 'q'
 if key == chr(27):
 sys.exit()
 if key == "q":
 sys.exit()

def main():
 global width
 global height

 glutInit(sys.argv)
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE)
 glutInitWindowPosition(100,100)
 glutInitWindowSize(width,height)
 glutCreateWindow("The Chaos Game")
 glutReshapeFunc(reshape)
 glutDisplayFunc(plotfunc)
 glutKeyboardFunc(keyboard)

 init()
 glutMainLoop()

main()

End of program

 When you have typed the code listing and have checked for errors, run the
program. Not very impressive, is it? Let's fix that! In the function def plotfunc():,
change the 100 in for n in range(0,100):10 to 1000 and run the program again.
Do you see some structure? Change the 1000 to 10000 and try again. Better? Now
try 100000 points. The structure you see is called the Sierpinski Gasket11 and it is an
attractor, meaning that all points after the first few are attracted to this triangular shape.
We could plot millions12 of points and they would all find their way to the Sierpinski
Gasket! I find this fact to be as remarkable as it is mysterious! How can it be that a
random process such as the selection of a vertex, and a rule consisting of finding the

10 You may be wondering why we used range(0,100) instead of arange(0,100)? The
arange() command requires the use of from Numeric import * and range() does not.
So what? Well, arange() allows us to step by decimal values such as 0.001 while range() is
restricted to integer steps. In this program, we use integer steps and arange() is not required.
11 Sometimes called the Sierpinski Triangle. This shape is a fractal!
12 Actually, an infinite number of points would behave in the same manner, but would take a
LONG time... well, an infinite amount of time to plot. We'll settle for thousands or perhaps
millions of points in our work in this text.

 117

iterated midpoint between the old midpoint and the randomly selected vertex, results in
such a remarkable picture? This is nothing short of amazing!

 One special property of the Sierpinski Gasket is that it has no surface area. You
may find this difficult to believe, but consider that we are actually plotting geometric
points13 and geometric points have zero area. The Sierpinski Gasket can be constructed
in other ways and you’ll have the opportunity to research this in the exercises. Example
plots of the Sierpinski Gasket are found in figures Sierpinski 100, Sierpinski 1000,
Sierpinski 10000, and Sierpinski 100000 below.14

 Sierpinski 100 Sierpinski 1000

 Sierpinski 10000 Sierpinski 100000

 What is the first thing you noticed about the Sierpinski Gasket? Triangles within
triangles, of course! A second special property of the Sierpinski Gasket is that it is an
example of a fractal. Fractals such as the Sierpinski Gasket exhibit self-similarity

13 Geometric points are represented by pixels… a pixel is NOT a geometric point!
14 The numbers refer to the number of points plotted in each figure.

 118

(among other things) and no matter how much you magnify them, you will always
encounter the same image… at least until you reach the limit of your computer’s ability
to distinguish one number from another.15 For example, if you choose one of the smaller
triangles within the large triangle and magnify it, you will see that the magnified image is
indistinguishable from the original Sierpinski Gasket. As a matter of fact, they are
exactly the same! There are as many points within ANY of the small triangles (no matter
how small!) and the entire Sierpinski Gasket. This is absolutely true, but very difficult to
believe. For a physical analogy, think of a hologram. A complete hologram contains
enough information to display a true 3D image of an item or scene. If you cut a
hologram into tiny pieces, each piece still contains the entire image, albeit from slightly
different perspectives.16 This isn’t a mathematical proof, of course, but the idea can be
extended to fractals in a somewhat similar fashion. Another interesting property of a
fractal is that its dimension is not an integer. The Sierpinski Gasket is not a 2-
dimensional object, nor is it a 1-dimensional object. Instead, its dimension is
somewhere in between. A fractal has a fractional dimension.

 If you want a more mathematical treatment of fractals than the hologram analogy,
remember that there are as many counting numbers as even numbers and as many
even numbers as odd numbers and as many prime numbers as counting numbers… all
these sets contain an infinity of numbers. Likewise, there are an infinite number of
points in every portion of a Sierpinski Gasket. You could magnify a small corner of the
Gasket 101000000 times and that tiny portion still contains an infinite number of points…
just like the original image! We’ll revisit the concept of fractals and iteration several
times throughout this text. Now back to the pychaosgame.py program and the
Sierpinski Gasket.

 If you were paying attention to the code as you typed, you may have noticed the
unfamiliar use of the variable verts in the def plotfunc(): function. This
construction is known as a list (in Python) or generically as an array. Arrays are a very
powerful feature in any programming language and we need to discuss how they are
created, accessed, and manipulated in a program.

 Imagine for a moment that we need to create and store a list of 100 (x, y)
coordinates. How would you do this? Well, we could create 100 "x" variables and 100
"y" variables and name them x0, y0, x1, y1, x2, y2, … x99, y99. That would be a royal
pain, though, and we wouldn't have an easy way to reference or use any of the variables
when we needed them. There must be a better way and that's where the concept of an
array enters the scene. An array is a list of variables, all having the same variable
name, but with each position in the array assigned a different number or index. In our
100 (x, y) coordinate example, we could create an "x" array and a "y" array, each
capable of storing 100 (or more) values. The first "x" coordinate would be called x[0]
and the first "y" coordinate would be called y[0]. The 50th (x, y) coordinate would be

15 Contrary to popular belief, computers are NOT that great when it comes to mathematics. The
real number line is a good example. You already know that the real number line is complete,
meaning that there are no holes in the number line anywhere. Not so with the computer! Most
computers are capable of 15 or 16 digits of precision (decimals), which means that if two values
differ in the 17th decimal place or beyond, your computer can’t tell the difference between them
without special software.
16 I’ve seen and done this… it’s remarkable!

 119

(x[49], y[49]).17 The value of such a construction is that we can easily run through all
100 coordinates by using a loop as follows:

 for n in range(0,100):
 glBegin(GL_POINTS)
 glVertex2f(x[n], y[n])
 glEnd()
 glFlush()

 This small sample of code would have plotted all ordered pairs (100 of them from
x[0], y[0] to x[99], y[99]) stored in the x[] and y[] arrays.18 This is FAR easier
than trying to create and use 2*100 individually named variables!

 Arrays are an efficient method for storing hundreds, thousands, and even millions
of data points. However, they can be difficult to understand, especially for a beginning
programmer. Sometimes visualizing arrays as lists seems to help in the understanding
of how to store and access data in an array. Let's use the x, y coordinate data we've
previously discussed as an example. Imagine that the x and y data are stored in the
following manner:

 x[] variable y[] variable

 x[0] y[0]
 x[1] y[1]
 x[2] y[2]
 x[3] y[3]
 . .
 . .
 . .
 x[99] y[99]

 The x[] and y[] arrays are examples of single dimensional arrays. You can
imagine each as a single column or list of values with each x[n] and y[n] entry
capable of storing one value. We are not limited to arrays of a single column or
dimension, though. We can just as easily create 2, 3, 4 or higher dimensional arrays.
Arrays of 2 dimensions can be visualized as rows and columns similar to a spreadsheet.
3-dimensional arrays can be visualized as layers of spreadsheets or stacks of row and
column data. Higher dimensions are a bit more difficult to visualize.

 The pychaosgame.py code in this section uses a 2-dimensional array to store
the vertex coordinates of the initial triangle shape. We'll use this program to illustrate the
concept of storing and accessing data in a 2-dimensional array.

 The import section of the code is slightly different than the previous programs
we've studied. We have removed the from numpy import *19 line and inserted

17 Remember that we usually start counting with "0" in computer science.
18 We would have used a similar loop construction to store values, such as those generated by a
function, prior to plotting the array.
19 We could have left this statement in the code without problems. We didn't need the extra math
functions in this example, so I chose to remove the from Numeric import * line.

 120

from random import *. The width and height statements are similar to previous
programs and axrng is set to 2.0. The def init(): function specifies a white
background with black as the graphics plot color. The major changes occur in the def
plotfunc():, so we'll focus on that routine.

def plotfunc():
 # Store the triangle vertices in an array
 verts = [[0.0,2.0],[-2.0,-2.0],[2.0,-2.0]]

 # Choose an initial point... any point
 x = -1.5
 y = 0.75

 glClear(GL_COLOR_BUFFER_BIT)

 for n in range(0, 100):
 v = randint(0,2)
 x = (x + verts[v][0])/2
 y = (y + verts[v][1])/2

 if n > 30:
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()

End Function

 We have been discussing arrays, so it should come as no surprise that the first
uncommented line of the def plotfunc(): function uses an array to store the
vertices of the Sierpinski Gasket. This line of code looks a bit odd compared to the x, y
coordinates array example, so an explanation will be provided.

 verts = [[0.0,2.0],[-2.0,-2.0],[2.0,-2.0]]

 We use the variable verts to hold the triangle vertices.20 Look carefully at the
use of brackets imbedded within brackets.21 Although it may not be apparent at first
glance, this is a 2-dimensional array. We are grouping three sets of two values each
and storing these sets of values (x, y coordinates) in the verts array.

You can visualize this storage as follows:

 verts array

 verts[0] = [0.0, 2.0]
 verts[1] = [-2.0, -2.0]

20 Variable names should, where possible, describe the data they store.
21 Using an all-bracket array construction allows us to change array values during a program run.
We could have used all parentheses or brackets with imbedded parentheses, but then we could
not make any changes to the array while the program is running.

 121

 verts[2] = [2.0, -2.0]

Compare the above table with:

verts = [[0.0,2.0],[-2.0,-2.0],[2.0,-2.0]]
 verts[0] verts[1] verts[2]

Do you see how the verts array is structured? It is a list of ordered pairs.22

 After storing the triangle vertices in verts, we then choose an initial point to
begin the Sierpinski Gasket attractor. The point can be any point within reason. You
could even use a couple of random() statements here (we'll save that for an exercise).
I chose x = -1.5 and y = 0.75, but again, any point would suffice. After the initial
point is assigned, the graphics window is cleared and the glBegin(GL_POINTS)
command tells OpenGL to prepare to plot pixels.

 The loop statement for n in range(0,100): serves only to help us plot
exactly 100 pixels.23 In this loop, n serves only as a counter to keep track of how many
times we've looped. We'll see why n is important in a moment. Changing the 100 to
1000, 10000, or 100000 will increase the number of plot points accordingly. Immediately
following the for loop statement we see:

 v = randint(0,2)

which chooses a random integer from 0 to 2 inclusive and stores this integer in the
variable v.24

 Do you remember the midpoint formula from algebra? The midpoint (x2, y2) of
the segment joining the two points (x0, y0) and (x1, y1) is found by the following set of
formulas:

 x2 = (x0 + x1)/2
 y2 = (y0 + y1)/2

Remember the midpoint formula as we explore the following two lines of code:

 x = (x + verts[v][0])/2
 y = (y + verts[v][1])/2

 We are using the midpoint formula in the two lines of code above,25 but it may not
be readily apparent. You can see in each line that we are dividing an expression in

22 We’ll revisit these two examples again with additional information later.
23 In this case, we don't use the index n to access array variables as we did in the array example
using (x, y) coordinates. n is used only as a "counter" to insure that we actually do loop the
specified number of times in order to plot the specified number of pixels.
24 "Inclusive" means that a 0, 1, or 2 will be chosen and stored in v each time we "loop" by this
statement. So any integers used as parameters in random(a,b) will randomly choose integers
from a to b inclusive.

 122

parentheses by 2, but the parenthetical expressions look a bit strange! Let’s see if we
can decipher this code, starting with:

 x = (x + verts[v][0])/2

 But before we go further, let’s make the concept of an equation in Python more
clear. Anytime we see an “=” sign in an equation, we must interpret the expression as
follows: First, calculate the value of the function on the RIGHT side of the “=” sign and
THEN store that value in the variable on the LEFT side of the “=” sign. Using this rule
allows us to use equations in Python (and other languages) that make no sense in
algebra. For example, the equation x = x + 1 has no solution. Such an equation
makes perfect sense in Python, however, because we would interpret such an
expression as follows: Add 1 to the current value of x and store this result as the NEW
value for x. Such a construction acts as a counter because each time we “hit” the
statement, 1 is added to the current value of x.26 Again, this x = x + 1 statement is
an example of the concept and process of iteration, which can be generally illustrated by
the following expression:27

 (what you now have) = (what you had) + (something new)

 Using this reasoning, we evaluate the statement x = (x + verts[v][0])/2
by first calculating the expression on the right hand side of the "=" sign. This expression,
(x + verts[v][0])/2, uses parentheses to group a couple of terms, so let’s focus
on (x + verts[v][0]) first. To the current value of x, we add verts[v][0].
Based on the description of how to plot a Sierpinski Gasket, you might deduce that x
represents the current x coordinate location and verts[v][0] represents the x
coordinate of the randomly selected vertex… but how do we know this? Look at this
earlier “visual” again with some additional information. The [0] and [1] labels are
placed above the x and y coordinates respectively.

 [0] [1] [0] [1] [0] [1]
verts = [[0.0,2.0],[-2.0,-2.0],[2.0,-2.0]]

 verts[0] verts[1] verts[2]

 Does this make sense? Remember that each of the vertices of the Sierpinski
Gasket are stored in the verts array, shown again below (again, with additional
information). Each vertex contains two pieces of information, an x and a y coordinate
and we must have a method of “finding” or calling each piece of data in order to
calculate a midpoint. If we label each vertex with a verts[0], verts[1], or
verts[2], it makes sense that we can label the x and y coordinates with an additional
[0] and [1] respectively in the following manner: verts[0][0] or verts[2][1].
Do yourself a favor and examine the following table carefully!

25 Remember that we plot the Sierpinski Gasket by finding the midpoint from the current point to a
random vertex, with each new midpoint serving as an endpoint for the next calculation or
iteration.
26 x = x + 1 is one form of a counter. Another counter form which leads to identical results is
x += 1 which is sometimes called an increment function.
27 I've already discussed the concepts of what the "=" sign does and iteration, but indulge my
tendency to repeat important concepts. Iteration will be discussed again a bit later.

 123

 verts array x y

 verts[0] = [0.0, 2.0]
 verts[1] = [-2.0, -2.0]
 verts[2] = [2.0, -2.0]

 [0] [1]

 So, verts[0][0] holds the x coordinate of the first vertex (x = 0.0) and
verts[0][1] holds the y coordinate of the first vertex (y = 2.0).28 What verts
expression holds the y coordinate of the 3rd vertex and what is its value?29 What verts
expression contains the x coordinate of the 2nd vertex and what is its value?30 Now we
can interpret the two lines of code that calculate the midpoints.

 x = (x + verts[v][0])/2
 y = (y + verts[v][1])/2

 In the first line (look at the right side of the “=” first!), we add the current x
coordinate position to the x coordinate of the randomly chosen vertex stored in
verts[v][0].31 We then divide this sum by 2 and store the value of the x coordinate
of the new midpoint back into the variable x. In the second line, we add the current y
coordinate position to the y coordinate of the randomly chosen vertex stored in
verts[v][1]. We then divide this sum by 2 and store the value for the y coordinate of
the new midpoint back into the variable y. So, each new value for x and y is calculated
from the old values for x and y.32 This procedure is an example of the iteration process
we discussed earlier.

 Although it isn’t legal Python, we might think of these iterated equations in
“pseudo-code” for clarity:

 xnew = (xold + verts[v][0])/2
 ynew = (yold + verts[v][1])/2

 Now that we’ve calculated the new midpoint, we need to plot it using
glVertex2f(x, y).

 if n > 30:
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()

28 THINK about this! This is a crucial concept.
29 If you answered verts[2][1] and y = -2.0 then you were correct!
30 verts[1][0] and x = -2.0. Were you correct? If so, then you understand this array. Nice
work!
31 Remember that “v” will equal 0, 1, or 2 based on the v = randint(0,2) statement.
32 So, x and y serve “double” duty. When on the right side of the = sign, they represent the old
values for x and y. When on the left side of the = they store the new calculated values for x and
y. This double duty can be confusing for humans, but Python has no problem distinguishing the
“old” from the “new”. See the pseudo-code equations in the text.

 124

 glFlush()

 The only difference between this code and previous programs is the if n >
30: conditional statement. We don’t begin to plot points until we have passed 30
iterations (if n > 30:).33 This line of code is not strictly necessary,34 but it serves to
“pretty up” the plot. The Sierpinski Gasket is an attractor in that eventually all points end
up belonging to the set of points that make up the Gasket.35 Since we picked the initial
point at random, the first few calculated midpoints may not yet be on the Sierpinski
attractor and may be found scattered in the “open” spaces of the Sierpinski Gasket. By
waiting for the first 30 or so iterations to pass before we begin plotting, we will be
reasonably certain that all future plotted points will be on the Gasket.

 The functions def reshape(w, h):, def keyboard(key, x, y):, and
def main(): are essentially unchanged from previous programs with the exception of
the caption in glutCreateWindow within the def main(): function.

Exercises

1) Research Sierpinski online. See if you can find examples of other methods for
creating a Sierpinski Gasket or Sierpinski Triangle. What other facts about
Sierpinski Gaskets can you find? How about other fractals called Carpets? We
haven’t yet studied 3D graphics, but can you find an example of a 3D Sierpinski
Sponge? Also, look up “Menger Sponge” and see if you notice any similarity with
the Sierpinski Sponge.

2) Research fractals online. Be prepared to find a LOT of information on this topic!

What are fractals? Why does the Sierpinski Gasket qualify as a fractal? What
other fractals did you find? You might see some of the fractals you found online
later in the text? As you research, remember the mathematics is NOT an opinion
or belief. How might you verify the information you find online?

3) Comment the following lines in def plotfunc(): as follows:

 #x = -1.5
 #y = 0.75

 and add these lines immediately below36 #y = 0.75 and above the loop code
 block.

 x = random()
 y = random()

33 Actually, 31 iterations. Why?
34 If you remove it (and we will in an exercise) remember to move the glVertex2f indentation to
match the lines above it.
35 They are “attracted” to the Gasket… the points have no choice but to find Sierpinski!
36 You can add a blank line first to separate the new lines from the remarked code.

 125

 What do you think these new lines do? Run the program and see if there are any
 differences in the new plot when compared with the original program.

4) 100 points is far too small for an adequate plot of a Sierpinski Gasket. Try 1000,

10000, and 100000 and see how the plot changes. If you have the patience, try
1000000 points! Does the graph change? If so, how?37

5) Remove or comment the if n > 30: line, remembering to indent the

glVertex2f line at the same level as the lines above it. Run the program
plotting at least 100000 points. Do you see any “stray” points? These “strays”
would represent the initial point and the first few midpoints as they find their way
to the Sierpinski Gasket attractor. Based on your experimentation, do we need
to wait until 30 iterations have completed before plotting or would a smaller
number suffice? What is the smallest value needed? Hint: You may want to plot
the first few points in a different color or size (or both) to distinguish them from
the points on the Sierpinski Gasket. How would you do that?

6) Place the line

 glColor3f(random(), random(), random())

 immediately above the glVertex2f statement. Before running the program,
 try to predict the output. Were you correct? What happens if you add a
 glPointSize(2.0) above the glBegin(GL_POINTS) statement?

7) It’s now time to change the plotting rules and see if we can create something

different. In def plotfunc():, change the x and y assignment statements to:

 x = (tan(x*y*y) + verts[v][0])/2
 y = (tan(y) + verts[v][1])/3

 You should see something similar to Figure Ex. 7 at the end of these exercises.

 Now try the following x and y assignment statements (note the additional code
 and the change in the y assignment statement):

 x1 = x
 x = (tan(y*y*x) + verts[v][0])/2
 y = (tan(x1*x) + verts[v][1])/3

 The x1 = x line retains the “old” value of x so that we can use it in the "y = "
 assignment statement. Otherwise, we would be forced to use the “new” value of
 x calculated in the “x = “ assignment statement. This is OK if that’s our intent,
 but sometimes we need to use the previous value of x or some other variable in
 future calculations.

 Experiment with these lines and create something new!

37 You know where to change these values, don’t you…? I knew you did!

 126

8) Now let’s change the vertices and see what we can create. Try the following:38

 verts = [[0.0, 2.0],[1.732, 1.0],[1.732, -1.0],
 [0.0, -2.0],[-1.732, -1.0],[-1.732, 1.0]]

 Let axrng = 1.0 and in def plotfunc(): change the randint()
 statement to:

 v = randint(0,5)

 Also, change the x and y assignment statements to:

 x = (x + verts[v][0])/3.0
 y = (y + verts[v][1])/3.0

 Note that you are dividing by 3.0 instead of 2.0. Can you predict what will
 happen when you run the program? You should see something like Figure
 Ex. 8 at the end of these exercises. Surprised?

9) Once again we’ll change the x and y assignment statements. We’ll use the same

lines of code that we used at the beginning of exercise 7 as follows:

 x = (tan(y*y*x) + verts[v][0])/2
 y = (tan(y) + verts[v][1])/3

 Let axrng = 1.5 and run the program. The output should look like Figure Ex
 9. The plot looks a bit “plant-like”, don’t you think? Remember this structure in
 the next section of the text!

10) Finally, try one more modification and then you can experiment on your own.

Again, set axrng = 1.5 and make a simple modification to the “x = “
assignment statement as follows:

 x = (tan(y*x) + verts[v][0])/2

 The plot is interesting and should resemble Figure Ex 10. Now experiment on
 your own and see what you can create.39

11) Ok, I didn't really mean "Finally" in the last exercise. I simply had to add one

more, mainly because I think this one is really neat. I'm not certain what to call it,
so how about "Blank's Carpet"? Seriously, try the following modifications to your
program:

 # Initial values
 width = 500

38 This is all one statement and it’s OK to type it as such… but it’s also OK to type it as seen in
the text. Python doesn’t care and will ignore the line feed. You could even carry this example
further and put a single vertex on each line for clarity. Try it!
39 Iterated functions that create pictures such as the ones in this section and the Barnsley Fern in
the next section are called Iterated Function Systems.

 127

 height = 500
 axrng = 1.0

 # in plotfunc
 verts = [[-2.0, 2.0], [-2.0, -2.0], [2.0, 2.0],
 [2.0, -2.0],[-1.0,1.0],[-1.0,-1.0],
 [1.0,1.0],[1.0, -1.0]]

 for n in range(0,100000):
 v = randint(0,7)
 x = (x + verts[v][0])/3.0
 y = (y + verts[v][1])/3.0

 Place the above lines in the proper locations in your program code. Notice that
 we have added some extra vertices. Where would they be plotted? Would all of
 them show up in your graphics display window? Before you run the program, do
 you have any idea what the fractal will look like? Notice that we are choosing
 points 1/3 the distance from the current location to the next random vertex. Go
 ahead and run the program! You should see something like Figure Ex 11 on
 the next page. I think this is an interesting plot (at least).

 12) Can I add one more exercise? You'll like this one, I promise! Modify the code
 from the previous exercise as follows:

 # Add the following import statement
 # to get the trig functions
 from numpy import *

 # Initial values
 axrng = 10.0

 # In plotfunc
 verts = [[-2.0, 2.0], [-2.0, -2.0], [2.0, 2.0],
 [2.0, -2.0]]

 and change the for loop to:

 for n in range(0,100000):
 v = randint(0,3)
 x = (x + verts[v][0])*sin(y)
 y = (y + verts[v][1])*cos(x)

 The multiplication of the vertex selection code by trig functions should add some
 interesting effects to the graphic display. Run the program and see what
 happens. I think this is a beautiful plot. Can you add some color and make it
 even better? Figure Ex 12 shows the fractal!

 128

 Ex 7 Ex 8

 Ex 9 Ex 10

 Ex. 11 Ex. 12

 129

Section 6.4 The Barnsley Fern

 Exercise 9 in the previous section asked you to remember the plant-like
structures that were plotted when you added and modified the lines of code listed in the
problem. We are now going to expand on the ideas introduced in the Chaos Game
section to produce an graphics plot that raises the “plant-like” descriptor to a new level.
In Section 6.3 we used a simple rule with a random choice of vertices to produce the
Sierpinski Gasket attractor. In this section we are going to enlarge our scope and use a
combination of 4 sets of parameters, each one assigned a different probability of being
selected at random. Once a parameter set has been randomly chosen we’ll apply the
selected parameters to our rules or equations. The result of this iterated function system
is both surprising and beautiful!

 Here is the program listing for this section.

PyBarnsleyFern.py

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from random import *
from numpy import *
import sys

Globals for window width and height
global width
global height

Initial values of width and height
width = 600
height = 600

def init():
 # White background
 glClearColor(1.0, 1.0, 1.0, 0.0)

 # Green Plot… it IS a Fern
 glColor3f(0.3, 0.6, 0.2)

 # Set the projection matrix... our "view"
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 # Set the plot window range
 gluOrtho2D(-3.0, 3.0, 0.0, 10.5)

 # Set the matrix for the object we are drawing
 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

 130

def plotfunc():

 # Choose an initial point... any point
 # You can randomize this if you wish
 x = -1.5
 y = 0.75

 glClear(GL_COLOR_BUFFER_BIT)

 # Plot 100000 points. This number is very large.
 # Feel free to experiment with smaller values.

 for n in range(0,100000):

 # n allows us to reject the first few points
 # to give the attractor a chance to do its “thing”

 # Choose a random value between 0 and 1 and
 # then select a set of parameters based on this value.
 v = random()

 if v >= 0 and v <= 0.8000:
 a = 0
 b = 1.6
 c = -2.5*pi/180
 d = -2.5*pi/180
 e = 0.85
 f = 0.85
 #glColor3f(1.0, 0.0, 0.0)

 elif v > 0.8000 and v <= 0.8050:
 a = 0
 b = 0
 c = 0*pi/180
 d = 0*pi/180
 e = 0
 f = 0.16
 #glColor3f(0.0, 1.0, 0.0)

 elif v > 0.8050 and v <= 0.9025:
 a = 0
 b = 1.6
 c = 49*pi/180
 d = 49*pi/180
 e = 0.3
 f = 0.34
 #glColor3f(0.0, 0.0, 1.0)

 elif v > 0.9025 and v <= 1.0:
 a = 0
 b = 0.44

 131

 c = 120*pi/180
 d = -50*pi/180
 e = 0.3
 f = 0.37
 #glColor3f(1.0, 0.0, 1.0)

 # Save the old values of x and y so we can iterate
 # those values according to the chosen parameters
 # and rules.
 xx = x
 yy = y

 # Apply the parameters to the rule equations
 x = e * xx * cos(c) - f * yy * sin(d) + a
 y = e * xx * sin(c) + f * yy * cos(d) + b

 # Start plotting after the 10th point
 if n > 10:
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()

def keyboard(key, x, y):
 # Allows us to quit by pressing 'Esc' or 'q'
 if key == chr(27):
 sys.exit()
 if key == "q":
 sys.exit()

def main():
 global width
 global height

 glutInit(sys.argv)
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE)
 glutInitWindowPosition(100,100)
 glutInitWindowSize(width,height)
 glutCreateWindow("The Chaos Game... Fern!")
 glutDisplayFunc(plotfunc)
 glutKeyboardFunc(keyboard)

 init()
 glutMainLoop()

main()

#End of Program

 132

 Figure 6.3 at the end of the exercises illustrates the Barnsley Fern. Nice, huh?
This is supposedly an example of a spleenwort fern, but I’m not a fernologist40 so I can’t
verify this. The Barnsley Fern is another example of a fractal image. Remember that
fractals are self-similar geometric objects that have fractional dimensions.41 Self-similar
means that as we magnify the fractal, the details never diminish and we continue to see
the same patterns, perhaps with slightly different rotations or with some distortions. In
the case of the Barnsley Fern, each branch is a smaller copy of the entire fern. Each
leaf on a branch is a smaller copy of the branch, which is a smaller copy of the entire
fern… and so it goes! Fractals are infinite in complexity, yet they can be captured to an
extent by your computer. The next chapter will be devoted to some of the more beautiful
easily generated fractal images. Toward the latter part of the text, we’ll make a valiant
attempt to visualize some 3D fractal images and perhaps some 4D fractals. Some of
these are bizarre in their structure and I hope you'll enjoy them!

 The Barnsley Fern program in this section randomly chooses a set of parameters
and then applies those parameters to some specific rule statements. With the exception
of the init function, which sets the x and y axis ranges to different values than in
previous programs (look at the ranges!), the majority of the Barnsley Fern program
listing is similar to the Sierpinski Gasket “Chaos Game” program. We’ll focus our
attention only on the section of code in the def plotfunc(): routine where the fern
attractor is created. The v = random() statement assigns a pseudo-random value
between 0.0 and 1.0 to the variable v. Notice the series of if… elif42 decisions
following the v = random() line of code. Careful examination should reveal that the
first if statement and its associated parameter set is far more likely to be chosen than
any of the other conditional statements. Why? Which conditional or decision statement
and parameter set is least likely to be chosen? Again, why? Notice the use of pi within
the conditional statement code blocks. We are using pi in the parameter sets to convert
from angle measurements (which the Python trig functions can’t use) to radian
measurements (which the Python trig functions MUST use). There are pi radians in
180 degrees, so the conversion is:

 n degrees * (pi radians)/(180 degrees)

The degree(s) units will cancel and we are left with the appropriate angle measure in
radians. So, c = 120*pi/180 is a statement that converts 120 degrees to radians and
stores the radian angle measure in the variable c. Which other parameter uses this
conversion?43

 The rule statements:

 x = e * xx * cos(c) - f * yy * sin(d) + a
 y = e * xx * sin(c) + f * yy * cos(d) + b

40 I’m certain that isn’t the correct term for a fern expert.
41 Instead of 2D, the dimension may be 1.576D. We’ll touch on the topic of fractals, but a detailed
study of these interesting and beautiful objects is beyond our scope at this point.
42 elif is a Python abbreviation for “else if”.
43 "d" of course!

 133

both use the randomly chosen parameters and the previous values of x and y (xx and
yy) to calculate new values for x and y. These new values are then plotted using the
glVertex2f command. Notice the use of trig functions within the equations. These
trig functions make use of the radian angles converted using pi in the parameter code
blocks. You also probably noticed the commented glColor3f statements after each
parameter set in the if… elif decision blocks. We’ll explore the affect of these
glColor3f statements (as well as other options) in the exercises. Make certain that
you save this program prior to working with the exercises. You can then reuse the
saved code for each exercise.

Exercises

1) Uncomment each of the glColor3f statements in the if… elif decision block.

You can now identify which parameter set is responsible for each part of the fern
attractor. Are you surprised? Feel free to experiment with different colors schemes.

2) Change the number of iterations from 100000 to a much smaller number (say, 1000)

and see what effect this has on the fern attractor. What is the minimum number of
iterations needed to create a decent (to you) attractor? Likewise change the number
of iterations to a larger value. The simple fact that all points eventually find their way
to the image of the fern provides a nice intuitive definition of the term “attractor”.

3) Above the glBegin(GL_POINTS) statement, add glPointSize(2.0) and see

what happens. Try changing glBegin(GL_POINTS) to glBegin(GL_LINES) or
glBegin(GL_LINE_STRIP) and see what effect this has. Do you like the result?

4) Experiment with some of parameter assignments. See if you can make the fern

bend or twist. Perhaps you can even change the leaf or stem patterns?

5) Change the probabilities within the if… elif decision statements. What

happens? Notice that the sum of all the probability intervals equals 1.0. Why? What
happens if there is a “hole” in the interval? For example, change the first if v >=
0 and v <= 0.8000: statement to if v >= 0 and v <= 0.5000: and see
what happens. Was there a difference in the fern plot? What did you expect to see?

6) One simple modification that you can make is to change the sin() statements in the

rules to tan() statements. At small angles, the values of sin() and tan() are
nearly the same, so distortions would occur only when the angles are relatively large.
The figure "tan()" at the end of the exercises illustrates this simple change. The
effect is not dramatic, but the fern appears to be a bit more filled out in its foliage.

7) Experiment with the rule statements and see if you can create a unique and perhaps

otherworldly plant. Make certain you save your best efforts!

8) The Barnsley Fern program does not have a reshape function. Is this a problem?

What difficulties can you foresee in adding a reshape function to the program?
Would it be impossible to add such a function?

 134

9) Use Google or your favorite search engine to look for “Michael Barnsley” and
“fractals” and see what you can find. Barnsley is one of the pioneers in fractal
imagery. In particular, see if you can find references to his Collage theorem. What
is this theorem used for? You might remember this reference for a final project
suggestion if you are interested in the topic of fractal forgeries.

10) This is just a thought question. How does nature determine patterns in living

organisms? The easy answer is "By using the genetic code in DNA". But how does
this code work? Could it be that there is an iterated system found in the DNA of
every living thing? All maple leaves are different, yet they all are similar in shape
and structure otherwise we could not distinguish a maple leaf from an elm leaf. Can
this be explained by assuming that DNA randomly chooses a set of parameters
(whatever they may be) and applies a set of rules to those parameters? Look up
Stephen Wolfram and "A New Kind of Science" to see what one scientist has to say
about nature and computation.

 Figure 6.3

 135

 tan()

 136

Section 6.5 Chaos and the Logistic Map

 The population of a living species may fluctuate from year to year depending on
the available resources and the environmental conditions of the habitat. Biologists are
interested in the dynamics44 of population growth and decline. Computer simulations
have provided some insight into the nature of population dynamics and such simulations
continue to be an area of research and interest to modern biologists. In this section we
will conduct a classic simulation of population dynamics. We will use this simulation to
introduce the topic of chaotic behavior produced from a simple deterministic equation.45

 The logistic equation, xn+1 = rxn(1-xn) has been used to model population growth
and decline in addition to providing an introduction to the subject of chaos and chaotic
dynamics.46 47 In this equation, x represents the decimal percentage of the species
population in terms of the total carrying capacity of the habitat. For example, x = 0.85
would mean that the population is at 85% of its maximum capacity. The parameter r
represents all factors that affect the population we are studying (food, competition,
climate, etc.). The subscripts n and n+1 indicate that the output, xn+1, will be used as
the input, xn, during the next iteration. If the value of xn+1 is high, the term (1-xn) will be
relatively low for the next calculation, resulting in a lower population in the next
generation. As an example, using x = 0.85 would result in (1- 0.85) or 0.15 as
the population value for the next generation. This would represent a massive die-off
within the species in that particular habitat. Likewise, using x = 0.23 as the initial
population would result in (1- 0.23) or 0.77 as the population in the next generation,
presumably due to the abundance of resources available to the lower 0.23 number of
individuals. So, the (1-xn) term acts as a feedback mechanism, insuring that under
many conditions, the species population will adjust itself according to the conditions
specified by the variable r.

 This relatively simple equation, when iterated, produces surprising and
unpredictable results. Suppose we start with a value of r = 2.548 and a value of x =
0.5. Iterating the logistic equation we quickly find that the “population” stabilizes at 0.6
of its maximum carrying capacity. We can see this by plotting the graph of the

44 Dynamics can be defined here as the process of change in a system. This process of change
can be a change in position, motion, or simply a change in value or number. System dynamics is
quantitative or numerical in nature, but can be studied qualitatively by using graphics such as we
are doing here.
45 While this isn't a precise definition, we can restate this as "apparently random behavior from a
relatively simple non-random equation". The study of chaos and chaotic systems had its zenith in
the late '80's and early '90's. I still find the topic fascinating and I hope you find it interesting as
well.
46 Gleick, James (1987). "Chaos: Making a New Science". Penguin Books.
47 Stewart, Ian (1992). "Does God Play Dice? The Mathematics of Chaos". Blackwell
Publishing, p. 136.
48 The meaning of r is a bit obscure. In the logistic equation or mapping, r simply represents all
the factors that affect a species population. r is meaningless in terms of “What does r = 2.5
signify?” It’s just a value that represents a measureless quantity. It turns out, though, that the
parameter r is responsible for the interesting behavior behind the logistic equation and the
logistic equation seems to have some validity as a model of species population over time.

 137

population with respect to time. In this case, time will be represented along the x-axis by
subsequent generations. The following program listing will plot this graph under the
specified conditions.

PyLogistic.py

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from numpy import *
import sys

Define the width and height variables as global
global width
global height

Initial values for width and height
width = 600
height = 600

def init():
 glClearColor(1.0, 1.0, 1.0, 1.0)
 gluOrtho2D(-8.0,7.0,0.0,1.0)

def plotlogistic():
 glClear(GL_COLOR_BUFFER_BIT)

 glPointSize(1.0)

 # Set the initial values of x and r
 x = 0.5
 r = 2.5

 # Range over the entire interval
 for a in arange(-8.0, 7.0, 0.0001):

 # The logistic equation
 x = x*r*(1-x)
 glColor3f(0.0, 0.0, 0.0)
 glBegin(GL_POINTS)
 glVertex2f(a,x)
 glEnd()
 glFlush()

 # Print the final value
 print x

def keyboard(key, x, y):
 # Allows us to quit by pressing 'Esc' or 'q'
 if key == chr(27):
 sys.exit()

 138

 if key == "q":
 sys.exit()

def main():
 global width
 global height

 glutInit(sys.argv)
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE)
 glutInitWindowPosition(200,200)
 glutInitWindowSize(width,height)
 glutCreateWindow("Logistic Chaos")
 glutDisplayFunc(plotlogistic)
 glutKeyboardFunc(keyboard)

 init()

 glutMainLoop()

main()

End Program

 The plot from this program is found in the figure below.

 x = 0.5 r = 2.5

 Not very impressive, is it? There appears to be a bit of “noise” at the extreme left
hand portion of the screen. This noise represents some initial population fluctuations
resulting from the (1-xn) feedback mechanism attempting to find equilibrium. Rather
quickly 0.6 is reached as a fixed point. No further change in the population value occurs
once this fixed point is established. You should see 0.6 displayed in the DrPython
console.

 139

 The program listing is fairly self-explanatory. The logistic equation is found in the
plotlogistic function and is properly commented. Study this function carefully so
that you understand how the logistic equation is iterated. As in previous iterated
functions we’ve encountered, the “new” calculated value of the function (stored in x) will
be used as input for the next iteration (it will then be the "old" value at that future time).
The logistic equation is a dynamic system, meaning that it is constantly changing based
on the current conditions. Nature enacts such changes continuously, but we can’t model
continuous time flow using a computer. Instead, we introduce increments of time
(iterations) to model nature as closely as possible. The smaller the increments (usually
resulting in more iterations), the better we may simulate nature. Unfortunately, when we
decrease the time increments and increase the number of iterations, our simulation can
slow significantly. In this program we are using 0.0001 as our increment length. You
can experiment with the size of this value to see the effect on the simulation speed. If
the increment is too large, the plot will appear “dotted”. If the increment is too small, we
may unnecessarily increase the execution time of the program. It is possible to calculate
the optimum increment in most cases.49 We’ll discuss this topic further in later chapters.

 Note the print x statement following the glFlush() command. This
statement is used to print the value corresponding to the population in this first example.
You might loosely define this value as the current decimal representation of the fraction
of the carrying capacity of the habitat based on the present conditions (initial population
and the value for r). If the population fluctuates, this statement will only print the last
calculated value in the simulation. If you desire a running total, then you can place this
statement immediately after the logistic equation x = x*r*(1-x). Be warned that this
will slow down program execution! My recommendation is that you comment out this
line after the first simulation.

 Here is a short deviation from the task at hand. One of my former students
"accidentally" commented the glutInitWindowSize(width, height)
statement and noted that the program still ran. Try this! The program will run, but the
window size will be the default value of 300 x 300 rather than the 600 x 600 specified in
the initial width and height variables.

 Let’s experiment a bit. First change the value of x in the plotlogistic
function to x = 0.95 and run the program again. Try a few more initial values for x
(remember that 0.0 < x < 1.0, in other words, keep x between 0 and 1). It appears
as if the value of x is not crucial to the outcome of the simulation! From our simulation,
we can state that the initial size of the population doesn’t appear to affect the long-term
stability of the population using this particular value for r. Now let’s change r to r =
3.0 and see what happens. There is definitely a change in the graph. The line seems
to be a bit thicker and the left hand side of the graph has a split appearance. The
population does seem to again stabilize, but this time at a slightly higher value than
before. Apparently there is some minor periodic fluctuations at the beginning of the

49 There are instances, such as in this example, where we use a much smaller increment than
needed in order to slow down the rendering of the graph. Modern computers are so fast that
many drawings are plotted almost instantly. This is great if all we are interested in is the final
graph. Sometimes, though, it’s nice to watch the graph being plotted. In those cases, we
increase the number of increments (or decrease the time interval) to slow things down.

 140

simulation under these conditions. Once again change the value of x to verify that this
variable has no role in the long-term behavior of the population.

 To make things a bit more interesting, set r = 3.05. The result is pictured
below in figure x = 0.5 r = 3.05. We implemented a small change in r and the
result is a population that appears to fluctuate back and forth between two values! Can
you find the parameter between r = 3.0 and r = 3.05 where the two separate
population values first appear? The next figure x = 0.5 r = 3.45 was created
using r = 3.45. The population fluctuations are now a bit more complex. Try r =
3.49. Do you see that our species population now alternates between 4 separate
values? Now try r = 3.562. The result is in figure x = 0.5 r = 3.562. Now there are 8
separate values! This is getting interesting! Try r = 3.565 and then r = 3.571.
What do you see? I find it amazing that such small changes in r result in impressive
changes in population fluctuations.

 One of the hallmarks of chaotic behavior is the sensitivity of such systems to the
initial conditions of the simulation. In English, this means that a very small change in the
initial conditions (such as the value of r) can result in enormous changes in the
outcome. This is due to the feedback mechanism built into iterative systems. Small
errors keep growing (like feedback in a microphone and speakers!) until they completely
overwhelm the system. Also, notice the pattern of changes in the population values: 1,
2, 4, 8. If we were to experiment carefully, we would find 16, 32, 64, etc. This is called
“period doubling” and is found in all chaotic systems, not just this one. If we were to
check closely, we would also find that the rate of period doubling is constant at about
4.66950 times quicker for each successive doubling.

 x = .5 r = 3.05

50 This is called Feigenbaum’s Constant after Mitchell Feigenbaum, who first discovered the value
experimentally using a hand held programmable calculator in 1975. He found period doubling in
the logistic equation increased at the rate of about 4.669 for each successive doubling. He then
discovered the same 4.669 value in other completely different systems and he theorized that this
value was a universal constant found in all chaotic systems. He was proven correct and the
constant now bears his name.

 141

 Finally, let’s glimpse true chaos. Set r = 3.98. The result is nothing short of
impressive. We now have a population which is unstable at best. Even though we are
using the same logistic equation as before, it would be virtually impossible to predict the
population for more than a few iterations in advance. Figure x = 0.5 r = 3.98
illustrates the chaos lurking within this simple equation.

 To generate the Chaos! figure pictured below requires both an explanation and a
modification to our program. The explanation involves varying the value of r as we
move from left to right in the window. Lower values of r (<3.00) indicate a single stable
population. As we increase the value of r, the stable population rises until we reach a
point where the population abruptly divides into 2 values (at ~3.05). As r continues to
increase, we see period doubling bifurcations51 to 4, and then 8 values. After that, the
bifurcations come too quickly to distinguish in this figure and chaos is rapidly
established. This is a classic figure used frequently to illustrate explanations of chaotic
phenomena. Now you know how to make this graph yourself!

 x = .5 r = 3.45 x = .5 r = 3.561

51 A bifurcation is a splitting into two parts or paths.

 142

 x = .5 r = 3.98 Chaos!

 The program listing modifications needed to render the Chaos! Figure above are
found in the def plotLogistic(): function as follows:

def plotLogistic():
 glClear(GL_COLOR_BUFFER_BIT)

 glPointSize(1.0)

 x = 0.5
 r = 2.5

 for a in arange(-8.0, 7.0, 0.0001):
 r = r + 0.00001

 x = x*r*(1-x)
 glColor3f(0.0, 0.0, 0.0)
 glBegin(GL_POINTS)
 glVertex2f(a,x)
 glEnd()
 glFlush()

End function

 We set r = 2.5 initially and allow it to increase by 0.00001 during each iteration
of the r = r + 0.0000152 statement within the for loop. As you recall, the value of r
is the critical value in our program. As r increases, the population changes until chaos
is reached. You may be tempted to think that such a simple population model would
have little resemblance to real populations in the wild. In fact, many species of plants,

52 This statement can also be written r += 0.00001.

 143

insects, and animals seem to exhibit both stable and chaotic fluctuations in population
numbers as a result of changing conditions within their habitats.

Exercises

1) Use Google and look up Mitchell Feigenbaum and chaos. Also look up Robert May
 and chaos.

2) Another method of looking at the logistic equation is to consider that the equation is

actually a quadratic function and can be graphed as a parabola that opens
downward. We can see this by multiplying rx(1-x) and getting rx – rx2. The
negative rx2 term dictates the downward opening parabola. We can then iterate the
equation on the parabola and y = x line and see the chaos emerge. Try the
following changes to see this different view. First modify the gluOrtho2D statement
in def init(): as follows:

 gluOrtho2D(0.0,1.0,0.0,1.0)

 Once you have adjusted the viewing dimensions, then change the def
plotlogistic(): function according to the following listing.

 def plotlogistic():
 glClear(GL_COLOR_BUFFER_BIT)

 glPointSize(1.0)

 # set the r parameter
 r = 2.5

 # Plot the logistic parabola and the line y = x
 for x in arange(-1.0, 1.0, 0.00001):
 y = x*r*(1-x)

 glColor3f(0.0, 0.0, 0.0)
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glVertex2f(x,x)
 glEnd()
 glFlush()

 # Plot the population
 x = 0.3
 y = 0.0

 for n in arange(1,100000):

 # add some color for effect
 glColor3f(sin(x),cos(x*n),sin(n*y))
 glBegin(GL_LINE_STRIP)

 144

 # the OLD point
 glVertex2f(x,y)

 y = x*r*(1-x)

 # the NEW point
 glVertex2f(x,y)
 x = y
 glEnd()
 glFlush()

 # End Function

 The graph is illustrated in figure x = 0.3 r = 2.50 on the next page. The

“upside down” parabola represents the logistic equation. The diagonal line is the
y = x reference line. This reference line is important because it will allow us to use
the output of the logistic equation as input for the next iteration. The interpretation of
the horizontal and vertical lines connecting the parabola and the y = x reference
line is a bit tricky, but remembering the concept of iteration, let's give it a try. We
start with x = 0.3, represented by the vertical line extending from the bottom of the
window (at a location corresponding to approximately x = 0.3) and upward until it
intersects the parabola. The value of the logistic equation at this point (the
intersection of the x = 0.3 vertical line and the parabola) represents the new
population in the next iteration. We iterate this new population back into the logistic
equation by drawing a horizontal line from this intersection point to the y = x
reference line and then upward until we intersect the parabola again. This process is
continued until we stabilize at a single point (as shown in the first figure below) or we
complete some specified number of iterations. The y = x reference line is how we
turn "old" values of the logistic equation into new input for the next iteration. Do you
see how this works?

 If you are wondering about the duplication of glVertex2f(x,y) in the for

loop, remember that we are using glBegin(GL_LINE_STRIP) to plot from the
previous point to the current point. The first glVertex2f(x,y) is the previous
point and the second glVertex2f(x,y) represents the current point after the
logistic equation is applied. The result is a connected set of line segments that
represent the path or orbit of our iterations. Graphical analysis, while not definitive in
terms of proof, is a very powerful tool for analyzing the qualitative behavior of
equations and systems of equations. We can actually see the logistic equation
search for a stable solution (if one exists) or descend (ascend?) into chaos.

 Let’s experiment. Set r = 3.05. Figure x = 0.3 r = 3.05 shows the

result. The graph never settles to a single fixed point. If we watch closely, we may
be able to see that the horizontal and vertical lines eventually intersect the parabola
in two different points, corresponding to two population values. This two cycle
behavior is sometimes called a limit cycle. A limit cycle is simply a cycling or
repeating set of values and can be of any length depending on the equation and
equation parameters.

 145

 x = 0.3 r = 2.5 x = 0.3 r = 3.05

 Now let’s increase r until we approach chaos. Try r = 3.45. The result is

shown in figure x = 0.3 r = 3.45 below. Notice that the graph fluctuates
around several values. r = 3.561 demonstrates even more fluctuations as
pictured in x = 0.3 r = 3.561. Finally, to get a picture of full blown chaos, set
r = 3.98 and run the program. The result is rendered in figure x = 0.3 r =
3.98 and illustrates the wild population values created as a result of the chaotic
behavior of the equation. The figure can’t do justice to actually watching the program
run. You can easily see the population size change in a seemingly random fashion
and cover almost the entire range of allowable values. What values appear to be left
out?

 x = 0.3 r = 3.45 x = 0.3 r = 3.561

 146

 x = 0.3 r = 3.98 Zoom!

3) Try several values of r between 3.00 and 4.00. Try r = 4.00 and see if you can

detect a difference between r = 4.00 and r = 3.98. What is this difference?
Finally, try r = 4.01 and see what happens. Can you explain the result?

The figure Zoom! Illustrates a magnification of the intersection point between the y =
x line and the parabola in the previous figure. This magnification is around 100000
times, certainly in the realm of an electron microscope! Notice that the orbits of the
chaotic lines encircle the intersection, but of the 5 million iterations plotted for this
diagram (most of which are much larger than this very tiny area and are not shown),
none appear to hit the intersection point. This is certainly not a proof, but it is
suggestive that no line will ever strike this intersection point even though the
iterations are wildly chaotic. Can you think of a reason why this is so?53 Along the
same “lines” (sorry), none of the orbits will ever retrace itself. Why not?54 So, even
though the logistic system exhibits chaos and has the appearance of randomness,
there are some constraints on the system. We’ll visit this topic again in the next
chapter. Can you figure out a way to modify your program to replicate the Zoom!
figure?

This is not an exercise, per se, but I want you to think about this! Computers have a
reputation for truth. The computer is never wrong.55 If you don't believe me, then
the next time you are incorrectly billed or scheduled for a class you didn't sign up
for… or given a grade you didn't deserve, then where will the blame for the error be
placed? Most likely the error will be blamed on the human who input the original

53 What would happen if one of the chaotic orbits would exactly hit the intersection point? Would
there be any further chaos? Why not? The intersection point is a fixed point and would capture
all future orbits ending the chaos. However, this is a chaotic system, so that will never happen.
54 For the same reason as the fixed point. If an orbit ever retraced itself, then there would be a
predictable periodicity. In other words, the diagram would repeat itself and there would be no
more chaos.
55 And if you believe that, I have a bridge in New York I would be interested in selling…

 147

data! But is this always the case? Can computers make errors? You bet they can!
Computers lie all the time. It is simply not possible to represent all real numbers as
computer values. We can usually work with 15 or 16 digits of precision (if we are
lucky) and no more. This means that the computer real number line is "holey".
Nature has no such limitations. When an event occurs in nature, the precision of the
"calculations" is infinite. Because of this, we can never completely represent a
natural event within the confines of a computer simulation. There will always be
some error involved. This may not seem too important… after all, the computer can
represent values to 15 or 16 digits so the error will be quite small, right? Wrong. It
turns out that most of nature is chaotic. In chaos, the outcome is extremely sensitive
to the initial conditions and even vanishingly small errors "feedback" to the extent
that the resulting noise overwhelms our attempts to accurately portray nature.

 In the previous exercises, what would happen if the graph appeared to retrace itself
or strike the intersection point of the logistic parabola and the y = x reference line?
Would this mean that the model was wrong and the math incorrect? Not at all! The
pixels on the display window are not geometric points. Screen pixels are finite in
size and there are an infinite number of points between any two pixels. Just as with
the number line, we can never display all geometric points on a computer window.
So it would be quite possible for a line to appear to intersect a point, when actually it
does not. Try to keep this in mind if your graph doesn’t seem to do what you expect
or if the geometry doesn’t seem correct. Of course, the fault may still be human
error.

 148

Section 6.6 Predator-prey Relationships

 The logistic equation is a simple model56 of a single population within a habitat.
We can expand this model to include populations which are dependent on one another,
such as a predator-prey relationship. The Lotka-Volterra predator-prey model57 was
presented as a system of two differential equations as follows:

 bxyax
dt
dx

−= and exycy
dt
dy

+−=

 You probably haven’t studied differential equations, so I’ll attempt to interpret the
meaning of these. Let’s define x to be the prey population and y the predator
population. The first equation says something to the effect of “the change in x (that’s the
dx term) with respect to time (the dt term) is determined by some parameter a times the
previous x population minus some parameter b times the interaction between the
previous prey and predator populations (x*y)”. Specifically, we would reason that that
change in the prey population with respect to time (dx/dt) is affected by how many of
these organisms are available to reproduce (a*x) and the negative impact of the
interaction between predators and prey (-b*x). The predator population equation can
be translated in a similar fashion. The important thing to realize is that both equations
are “wired” together so that they interact with each other as do the populations they
model.

 How do we translate these differential equations into a form usable by Python?
The equations assume continuous time, but we can’t program continuous time in any
computer language.58 We must take some liberties and rewrite the equations as follows:

 x = x + (a*x – b*x*y)*dt
 y = y + (-c*y + e*x*y)*dt

where dt represents a very tiny time increment and both dx and dy are represented by
x and y respectively. In the equations, the new population values are calculated by
adding the old values of x and y to the change in populations represented by the
equations in parentheses multiplied by the time increment. We can now use the
equations in Python and solve them numerically by iteration.59 Technically, these
equations are now called difference equations and the listing below will demonstrate
their graphical behavior.

PyPredPrey.py

from OpenGL.GL import *
from OpenGL.GLU import *

56 With not so simple behavior!
57 http://mathworld.wolfram.com/Lotka-VolterraEquations.html
58 As far as I know… which may not be very far.
59 This method or rewriting differential equations is called Euler’s Method. You REALLY need to
look up Euler. He was an amazing mathematician of the first order. Much of his work was
completed after he was completely blind!

 149

from OpenGL.GLUT import *
from random import *
from numpy import *
import sys

Initial values of width and height
width = 400
height = 400

def init():
 # White background
 glClearColor(1.0, 1.0, 1.0, 0.0)

 # Set the projection matrix... our "view"
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 # Set the plot window range
 gluOrtho2D(0,10,0,6)

 # Set the matrix for the object we are drawing
 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

def plotpredprey():

 # habitat and population parameters
 a = 0.7
 b = 0.5
 c = 0.3
 e = 0.2

 # time increment
 dt = 0.001

 # initial populations
 x = 0.5
 y = 0.5

 glClear(GL_COLOR_BUFFER_BIT)

 for n in arange(0,10, 0.0001):

 # predator-prey equations
 x = x + (a*x - b*x*y)*dt
 y = y + (-c*y + e*x*y)*dt

 glBegin(GL_POINTS)
 # parametric plot
 #glColor3f(0.0,0.0,0.0)
 #glVertex2f(x,y)

 150

 # prey
 glColor3f(1.0, 0.0, 0.0)
 glVertex2f(n,x)

 # predator
 glColor3f(0.0, 0.0, 1.0)
 glVertex2f(n,y)

 glEnd()
 glFlush()

def keyboard(key, x, y):
 # Allows us to quit by pressing 'Esc' or 'q'
 if key == chr(27):
 sys.exit()
 if key == "q":
 sys.exit()

def main():

 glutInit(sys.argv)
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE)
 glutInitWindowPosition(100,100)
 glutInitWindowSize(width,height)
 glutCreateWindow("Predator Prey Simulation")
 glutDisplayFunc(plotpredprey)
 glutKeyboardFunc(keyboard)

 init()
 glutMainLoop()

main()

End of Program

 The astute reader may notice the lack of global variables within functions.
The global declaration is needed only if we want to change a variable’s value within a
function and have that change reflected over the entire program. In this case, we are
setting the width and height variables immediately and won’t alter them again during
a single run of the program. One note worth mentioning: The difference equations
contain the parameter e instead of d from the sample equations on the first page of this
section. This substitution was made to avoid confusion with the dt term.

 When we run the program, we should see a graphic plot similar to figure “Pred-
prey” below. The prey population is plotted in red and the predator population is blue.
Notice that the two peaks are related, but they don’t coincide. As the prey population
reaches its maximum, the predator population begins to grow. As the predator
population grows, the prey population declines (they are being eaten!). When the prey
population diminishes, the predators begin to starve. When the predators reach a low
number, the prey population begins to grow again and the cycle repeats. This is
interesting, especially if you like dynamic systems!

 151

 Another interesting way to graph this relationship is parametrically. Uncomment
the following glColor3f and glVertex2f lines in the def plotpredprey():
function (in the parametric plot section as shown below) and see what happens.

 # parametric plot
 glColor3f(0.0,0.0,0.0)
 glVertex2f(x,y)

 This additional plot (in black) is superimposed on the previous plot as pictured in
figure Pred-prey parametric below.

 Pred-prey

 Pred-prey parametric

 152

 What does this new plot mean? We are plotting both predator and prey
populations with respect to each other. Each point on the “oval” plot represents a single
predator-prey ordered pair or relationship, with the prey value on the x-axis and the
predator value on the y-axis. Trace the oval plot with your finger and see how it relates
to the previous x,y plot of population values. When the prey population is at its highest
level (the extreme right side of the oval), the predator population is below 50% of its
maximum. When the predator population is at its maximum (the extreme top of the
oval), the prey population is very low (the extreme top of the oval is toward the left side
of the graph… where the prey population is low). Remember, the x axis still represents
prey and the y-axis the predator populations!

 This section concludes chapter 6. In the next chapter we’ll explore some 2D
strange attractors and present some 2D fractal images that are considered “classic” in
both beauty and significance.

Exercises

1) The Lotka-Volterra equations are not chaotic as they are presented. Experiment with

the initial population values and see if these have an effect on the plot. Do you
notice any changes in the resulting graph?

2) Now experiment with the habitat and population parameters. You may have to

adjust the gluOrtho2D values if the graph becomes too small or too large. Can you
induce chaos? That is your goal in this exercise. Can you create a predator-prey
model that appears to fluctuate randomly, yet stays within certain limiting values?
You don’t want either population to run away to infinity, nor do you want either
population to reach extinction (zero). If you are able to achieve chaos, share your
model with your classmates and teacher!

3) You can experiment with time by changing the value for dt. Try dt = 0.01,

followed by dt = 0.0001. The smaller the "time-slice", the slower the program
execution. Why? Also experiment with the increment size in the for n in
arange(0,10, 0.0001): statement. Try 0.001 and then try 0.00001 and see
what happens. You can also try combinations of changes in dt and the loop
increment. However, if you are experimenting to see the effect that individual
changes have on a program, you should only change ONE parameter at a time.
Why?

4) For an interesting experience, use random() to randomize the parameters. Here's

how:

a = random()
b = random()
c = random()
e = random()

 You can also randomize the initial population values for x and y. The random()

command (which is available through the from random import * statement)

 153

generates a pseudo-random number between 0.0 and 1.0, which is perfect for the
parameters in this program. I would recommend that you print the parameter values
using print a, print b, etc. after the random statements in the event that you
get an interesting plot and you want to study it further. Do you see any chaotic
behavior with any particular set of parameter values? Chaotic behavior would give
the appearance of randomness among the population peaks and valleys rather than
a "nice" regular pattern of spikes. The parametric plot of chaotic behavior might be
interesting. If you come up with something that appears unusual, let your teacher
and classmates see the result!

Far from being simply an interesting command to play with, the pseudo-random
numbers generated by random() are important in many branches of math and
statistics… and of course, in game play.

5) What happens when you experiment with the population difference equations

themselves? Modify the equations and see what happens. Anything goes! What
happens if you substitute trig functions for some of the variables? Your result may
not model anything at all in the real world, but perhaps the graph will be interesting.

Chapter 7 Strange Attractors and Beautiful Fractals

 In this chapter we will take a closer look at some famous chaotic “strange”
attractors and explore the foundations of a few of the most beautiful fractal images ever
created. In conjunction with these fractal images, we’ll explore the rudiments of complex
arithmetic and learn that imaginary numbers are not imaginary at all! With the exception
of a brief interlude when we discuss animation, this chapter will constitute our last formal
study of 2D space. First, let’s talk about the weather…

Section 7.1 Lorenz and the Weather

 The weather is an intricate part of our daily lives and accurate weather
forecasting is both an enormous responsibility and a multi-billion dollar business.1 It was
once thought that with the introduction of computers in the mid-1900’s, weather
forecasting would eventually become an exact science (or nearly so!). If we could only
bring enough computing power to bear on the problem of forecasting, we could predict
with arbitrary certainty the weather many days, or even weeks, in advance. Imagine
what this would mean! We would no longer wonder whether2 or not we should take an
umbrella with us to school or work that day. We would know if the game will be played
next Sunday afternoon or if we should avoid the 3-hour round trip to the stadium.
Farmers could plan strategies for drought or wet conditions during the current growing
season. Insurance companies could advise potential home owners to avoid areas slated
to be hit by severe storms, tornadoes, or hurricanes. But in 1963, all these hopes of a
perfect weather forecasting system were dashed, although few recognized it at the time.

 Edward Lorenz was a meteorologist at MIT in the early 1960's.3 He had a
computer, which was not a common thing back in those days. It was hideously slow
compared to the machine you are using now,4 but it did work most of the time. Lorenz
used his computer to model the weather and his model was based on three (now
famous) differential equations he distilled from a more complex system. The three
equations are:

 yx
dt
dx 1010 +−=

 xzyx
dt
dy

−−= 28

1 Many of the most watched programs on television deal with the weather and some of the most
popular segments on news shows are the weather forecasts. As I write this, hurricane Katrina is
a recent memory and hurricane Rita is bearing down on Texas, it’s exact path uncertain..
Inclement weather has a profound and far-reaching effect on our economy and our daily lives!
2 Pun intended.
3 Stewart, Ian (1992). "Does God Play Dice?", Cambridge, MA: Blackwell (pp. 133-144).
4 The computer was a Royal McBee and had a clock speed of about 1 Hz. Compare that to a
typical desktop or laptop computer with a 1 gHz cpu. Your computer is about a billion times faster
than Lorenz's!

 155

 xyz
dt
dz

+−=
3
8

 The three x, y, and z equations are dependent on each other and they calculate
the change in each variable with respect to time.5 The key to these equations (and what
makes them impossible to solve analytically) is the xz and the xy terms in the second
and third equations respectively. The only way to effectively understand the behavior of
this system of equations was to let a computer solve the equations numerically6 and that
is exactly what Lorenz was doing when he made his monumental discovery.

 One day he was running his weather simulation and he wanted to know how a
particular solution behaved over a longer period of time. Since his computer was so
slow, he decided not to start over at the beginning, but instead, simply entered some
numbers from the middle of the run and started the simulation from that point. What he
expected to happen (and by all rights, what SHOULD have happened) was that his
Royal McBee computer would simply repeat the original run exactly from the new
starting point and then go on from there. Lorenz took a coffee break and returned to the
printout, expecting to see a duplication of the second half of numbers followed by a new
weather pattern. What he saw on the paper was nothing short of a mystery. The
numbers did repeat themselves for awhile, but then they slowly diverged until the
computer was predicting a completely different weather pattern. How could this be?
How could the same equations produce a different result? At first, Lorenz suspected a
computer glitch, but then when the computer was found to be running correctly, he
realized that something deep was occurring within the equations themselves. He saw
that instead of entering the numbers exactly as they were on the printout, he had
rounded them to 3 decimal places instead of the usual 6. This seemed reasonable,
since everyone knew at the time that small differences in input led to small differences in
output… in other words, it shouldn’t have made much difference whether the starting
values were 3 or 6 decimal places as long as they represented close to the same value.
Well, everyone was wrong. It DOES make a difference! Small, even vanishingly small,
differences in input can lead to enormous changes in output. Once Lorenz realized this
fact, he knew that long-range weather forecasting would be forever out of reach.

 All official weather forecasts are based on computer models. These models use
systems of equations that rely on data received from various weather stations. This
input is limited to a relatively few weather stations scattered worldwide and the
measured weather data is limited to a few decimal places depending on the instrument
used to collect the data. Nature, however, is not limited to any specific number of
decimal places and weather occurs at every point in our atmosphere. Based on
Lorenz’s discovery, we now know that the outcome of any computer weather model is
extremely dependent on the data the model receives. Even if we improve our data
collection and instrumentation, we can never hope to achieve accurate prediction more
than a few days in advance. This extreme sensitivity to initial conditions has been

5 The three distinct x, y and z variables also imply 3 dimensional behavior, but we will view only 2
of these dimensions at a time in this chapter. We’ll explore the full 3D behavior of the Lorenz
system later in the text. Notice there is an xy term in the z equation, a y and xz term in the y
equation and a y term in the x equation. The equations are “wired” together!
6 No graphics at all… Lorenz's primitive computer produced only numerical results.

 156

termed the “Butterfly Effect” and is a hallmark of chaotic behavior.7 The flapping of a
butterfly’s wings in Hong Kong leads to a tornado (or not) in Kansas. Thank you,
Edward Lorenz…

 The following program will attempt to duplicate (as best as we can) Lorenz’s
famous computer run. We will have the advantage of graphics, but hopefully we can
catch a glimpse of what he saw on his printout and understand the insight he achieved
based on his computer model. Here is the program listing:

PyLorenz.py

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from random import *
from numpy import *
import sys

Globals for window width and height
global width
global height

Initial values of width and height
width = 500
height = 500

def init():

 # White background
 glClearColor(1.0, 1.0, 1.0, 0.0)

 # Set the projection matrix... our "view"
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 # Set the plot window range
 # This will coincide with the for... arange loops
 gluOrtho2D(-30.0, 30.0, -30.0, 30.0)

 # Set the matrix for the object we are drawing
 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

def plotlorenz():
 glClear(GL_COLOR_BUFFER_BIT)

 # Enlarge the points for better visibility

7 Remember that chaotic behavior was loosely defined in the last chapter as apparently random
behavior produced from deterministic or non-random equations. There are much more precise
mathematical definitions to be sure!

 157

 glPointSize(2.0)

 # The blue plot is the original plot
 # Note the values for x,y, and z
 x = 0.50002
 y = 0.50002
 z = 0.50002
 dt = 0.0005
 glColor3f(0.0,0.0,1.0)

 # the range is the horizontal width of the window
 for n in arange(-30,30, 0.0005):

 # Lorenz’s equations
 x = x + (-10*x + 10*y)*dt
 y = y + (28*x - y - x*z)*dt
 z = z + (-2.66667*z + x*y)*dt
 glBegin(GL_POINTS)
 glVertex2f(n,y)
 glEnd()
 glFlush()

 # The second plot in red is the truncated plot
 # Note the small difference in starting x,y,z values!
 x = 0.50000
 y = 0.50000
 z = 0.50000
 dt = 0.0005
 glColor3f(1.0,0.0,0.0)

 for n in arange(-30,30, 0.0005):
 x = x + (-10*x + 10*y)*dt
 y = y + (28*x - y - x*z)*dt
 z = z + (-2.66667*z + x*y)*dt
 glBegin(GL_POINTS)
 glVertex2f(n,y)
 glEnd()
 glFlush()

def keyboard(key, x, y):
 # Allows us to quit by pressing 'Esc' or 'q'
 if key == chr(27):
 sys.exit()
 if key == "q":
 sys.exit()

def main():
 global width
 global height

 glutInit(sys.argv)
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE)

 158

 glutInitWindowPosition(100,100)
 glutInitWindowSize(width,height)
 glutCreateWindow("Lorenz")
 glutDisplayFunc(plotlorenz)
 glutKeyboardFunc(keyboard)

 init()
 glutMainLoop()

main()

End Program

 When you run this program, you’ll notice that the red plot and the blue plot
coincide for a short distance, with the red overwriting the blue (red is the second plot
color). But then the two colors begin to diverge about one-third of the way across the
window. By the time the end of the plot is reached, both systems are following
completely different paths even though they are using the exact same equations and
differ in starting values by only 0.00002! Figure 7.1 below illustrates this strange, but
very interesting behavior.

 Figure 7.1

 What this means is that with any differences or errors in initial weather
measurements, no matter how small, completely different weather forecasts will result

 159

over a relatively short time. Since all measurements contain some amount of error,8 it is
effectively impossible to predict the weather for any significant time in the future. In fact,
we can get two completely different computer weather forecasts for the same place at
the same time simply by using data (temperature, pressure, humidity, wind speed, etc.)
that differ only in the 3rd or 4th decimal place. Compound this with the knowledge that we
don’t even know what the weather measurements are between weather stations and you
can see how startling this revelation was to a meteorologist such as Lorenz.9

 The three equations in def plotlorenz(): are the heart of the program and
are indented in the for loop.

 for n in arange(-30,30, 0.0005):
 x = x + (-10*x + 10*y)*dt
 y = y + (28*x - y - x*z)*dt
 z = z + (-2.66667*z + x*y)*dt

 We are letting n range from -30.0 to 30.0, stepping by 0.0005. There is no
magic in choosing n as a variable name; it could have been something else as long as
we avoid using the variables that we are calculating in the loop (why?). In all three
equations we are setting the new values for x, y, and z equal to their previous values
plus the product of the Lorenz equations and the time increment dt. Notice how each
equation depends on the results of the other equations in order to calculate new values.
If you consider that we are calculating a position for a point in space,10 then the
equations become similar to the familiar (hopefully) distance = current
position + rate*time that you learned in science. The rate for each variable is
simply the Lorenz equation for that variable. We plotted n versus x in figure 7.1, but you
can just as easily plot n versus y or z with the same effect. Try it! Consider n to
represent the passage of time in each plot.

 Now we are going to make some changes to the pylorenz.py program and view
the resulting graphic in a more classic form. Change the def plotlorenz():
subroutine as follows:

def plotlorenz():
 glClear(GL_COLOR_BUFFER_BIT)

 # Initial values for x, y, and z
 x = 0.50000
 y = 0.50000
 z = 0.50000
 dt = 0.0005

8 OK, say you measure the temperature of the atmosphere in St. Louis on riverfront and find it to
be 37.35o Celcius in July. That’s a fairly precise measurement to 4 significant figures. But is the
measurement accurate? What about the thousandths decimal place? We don’t know anything
about it, do we? And how about the temperature one block to the west? Remember that the
Lorenz graph we plotted diverged wildly when the difference in starting values was 0.00002!
9 Even if you placed weather stations every square meter across the globe, the uncertainty of
measurement and the unknown weather in the small space between the stations would still result
in the unpredictability of the weather over anything other than a very short time period.
10 This x, y, and z position represents the condition of the system at any point in time.

 160

 glColor3f(1.0,0.0,0.0)

 for n in arange(-30,30, 0.0005):
 x = x + (-10*x + 10*y)*dt
 y = y + (28*x - y - x*z)*dt
 z = z + (-2.66667*z + x*y)*dt

 # Plot x versus y
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()

 # End function

 Essentially we’ve simplified the code by removing one of the plotting sections
and changing the glVertex2f statement to plot x versus y rather than n versus y.
This is a parametric plot and the result is shown in figure x vs. y below. This figure is
a shadow or projection of the 3D Lorenz attractor onto the x-y coordinate plane. In 3D
space, we have a z-axis which comes out of the monitor toward us and goes into the
monitor away from us. Since we are not viewing a 3D screen at this point, all we can do
is project the 3D object on one of the 3 planes represented by the 3D coordinate system.
This is really no different than viewing a normal picture in a magazine where you see a
3D object (such as a human face) projected onto a flat page. Note: We could have
used a different loop structure since we no longer need the variable n to plot the Lorenz
attractor. Can you think of a different loop method that would work here?

 Each point on the projected attractor displays a particular set of atmospheric
conditions represented by the values for x, y, and z. These atmospheric conditions
continuously “flow” through 3D space as time passes. We can also look at projections of
the attractor on the x-z and y-z planes as shown in figures x vs. z and y vs. z
below. Both the x vs. z and y vs. z plots have a correction factor in the
glVertex2f statement. This correction factor lowers the plot so that we can see it
properly in the window. To program this correction, use glVertex2f(x,z-20) and
glVertex2f(y,z-20) respectively.

 161

 x vs. y x vs. z

 y vs. z x vs. z orig

 The x vs. y plot is a view of the Lorenz attractor from along the positive z-axis,
while the other plots are “side” views along the y and x axes respectively. The view
from the z-axis is centered properly in the window, but the side views (if not corrected)
show an attractor that is elevated above the x-y reference coordinate plane. The z-20
correction we applied in the glVertex2f statement lowers the plot in each window so
that we can see the full shape of the attractor. To see this lowering effect, change the
z-20 parameter to simply z in each statement. You can see the uncorrected original
form in the figure x vs. z orig. I like the corrected views much better! If you are
taking CAD drafting, these pictures are orthographic11 projections of the 3D Lorenz
attractor. Using your mental imagery skills, see if you can picture what the Lorenz

11 In an orthographic projection, there is no foreshortening with distance.

 162

attractor would look like in 3D space. We will revisit this attractor later in the text when
we encounter 3D graphics and animation.

 The Lorenz attractor is called a “strange attractor”. A strange attractor is an
attractor12 that is not simply a fixed point or a simple shape like a circle. Strange
attractors may or may not be visually interesting like the Lorenz attractor, but they tend
to signify very complex and often mysterious dynamics. We have already encountered
strange attractors in the last chapter with the Sierpinski Gasket and Barnsley Fern and
we’ll see a few more examples in the next section.

NOTE: Edward Lorenz passed away on April 16, 2008 at the age of 90.

Exercises

1) You should Google for Lorenz, Lorenz Attractor, and Butterfly Attractor and see what

you can find. This is a classic computer simulation and examples can be found
written in nearly every computer language with graphics capabilities.

2) Explore different starting values for x, y, and z and see if these values make any

noticeable difference in the shape of the attractor. Use the parametric plots of the
“Butterfly Attractor” rather than the line graph plot in the beginning of this section. If
you notice no discernible difference, what does this say about the definition or nature
of an attractor?

3) We can use the varying values of x, y, and z to color the graph with the glColor3f

statement. We have used the glColor3f statement as a function of variables in
the previous chapters, so let’s try it here as well. Make the following changes in the
plotlorenz function:

 glColor3f(x/8.0,0.20,0.20)

 and then

 glVertex2f(y,z-20)

 This plot is a y-z projection of the Lorenz attractor. We are colorizing the position of

the x parameter by using x/8.0 in the glColor3f statement. The resulting graph
hints at the 3D nature of the Lorenz attractor by showing in red the portion of the
graph that is closest to the observer. This is illustrated in figure Faux-3D at the end
of the exercises. Experiment with this concept and see if you can come up with
other interesting color schemes. Change the projection so that you are plotting
(x,z-20) and (x,y). What changes should you make in the glColor3f
statement to achieve the most effective plot colors when you change the projection?

4) Try changing the parameters of the equations themselves. For example, in the y =

y + (28*x - y - x*z)*dt equation, try 24*x instead of 28*x. Try 25*x next.

12 An attractor “attracts” all nearby points and orbits to it.

 163

See if you can determine the critical value between 24 and 25 which marks the
beginning of chaotic behavior.

5) Return the equations to their original state and then modify the x = x + (-10*x +

10*y)*dt equation by using different values in place of -10 and 10. Can you find
areas of stability or is chaos present regardless of the values you use?

6) Again, return the equations to their original state and modify the z = z + (-

2.66667*z + x*y)*dt equation by changing 2.66667 to different values. What
effect does this have on the resulting plots?

7) Make certain you have a saved version of the original program. Now you should

take some time to alter Lorenz’s equations. As an example, you may want to change
the equation x = x + (-10*x + 10*y)*dt to something on the order of x = x
+ (-10*x – 4.5*z + 10*y)*dt. When you modify the equations, be prepared
to alter the size of the graphics window using the gluOrtho2D command. You may
need to enlarge or shrink the plot dimension accordingly. For a more interesting plot,
try altering the equation z = z + (-2.66667*z + x*y)*dt to z = z + (-
0.5*z + x*x)*dt. You should probably change glVertex2f(x,z-20) to
glVertex2f(x,z-30) to center the plot. You can also change the gluOrtho2D
statement to enlarge the graphic plot window. This equation change is illustrated in
figure z-change at the end of the exercises. The glColor3f statement as a
function of x, y, and z was left intact from exercise 3 to provide some indication of
the 3D nature of this plot.

8) Another famous strange attractor similar in equation structure to the Lorenz system

is the Roessler attractor. The Roessler attractor is also a 3D attractor, but we are
going to project it in 2 dimensions similar to the Lorenz attractor. We’ll explore the
true 3D nature of both attractors later. To create the Roessler attractor, we’ll change
the plotlorenz function to plotroessler as follows:

 def plotroessler():
 glClear(GL_COLOR_BUFFER_BIT)

 # Initial values
 x = 1.0
 y = 1.0
 z = 1.0
 dt = 0.0005

 glColor3f(1.0,0.0,0.0)

 for n in arange(-90.0, 90.0, 0.0001):
 x = x - (y + z)*dt
 y = y + (x + 0.2*y)*dt
 z = z + (0.2 + x*z - 5.7*z)*dt

 glColor3f(sin(z),cos(x),sin(y))
 glBegin(GL_POINTS)
 glVertex2f(x,z-10)

 164

 glEnd()
 glFlush()

 # End Function

 Don't forget to change the glutDisplayFunc in the def main(): function to
 reflect the change in the display function name! Change the gluOrtho2D function
 to gluOrtho2D(-15.0, 15.0, -15.0, 15.0) to shrink the viewing window.
 The Roessler attractor generated with the above code is shown in the figure
 Roessler x-z. You should also try projecting the Roessler attractor on the y-z
 plane using glVertex2f(y, z-10) and the x-y plane using
 glVertex2f(x,y). The x-y plane projection is shown in figure Roessler x-y
 at the end of the exercises. The color scheme is arbitrary and may be changed to fit
 your tastes. Notice again that the glColor3f statement is written as a function
 of the x, y, and z values.

 Both the Lorenz and Roessler strange attractors are similar in that they trace the

continuous path or orbit of a point in 3D space subject to a set of 3 differential
equations. In the next section we will study 2D strange attractors that are visualized
as a slice or cross-section of a more complex dynamic system.

9) An additional twist to the coloration of either the Lorenz or the Roessler attractors can

be accomplished by using the distance formula from coordinate geometry. As an
example, you can use:

 glColor3f(sqrt(x*x+y*y)/15,sqrt(x*x+z*z)/15,sqrt(y*y+z*z)/15)

 and color each point based on the distance of that point from the origin. The division

by 15 is based on the window dimensions specified in the gluOrtho2D command.
You can also provide coloration based on a distance from an arbitrary point by using
the equation for a circle. For example, you could try:

 glColor3f(sqrt((x+1)**2 + (y-3)**2)/15 ,0.0 ,0.0)

 to provide a red shading effect based on the distance from the point x = -1, y = 3.

You can experiment with this effect using y-z coordinates, x-z coordinates or all 3
coordinates at once. The distance formula works in 3D too!

10) The Rikitake attractor13 is an interesting fractal in both form and function. See if you

can write most of this program on your own with the following hints. The equations
are relatively simple:

 x = x + (-2*x + z*y)*dt
 y = y + (-2*y + (z - 5)*x)*dt
 z = z + (1 - x*y)*dt

 The axis ranges in gluOrtho2D are as follows:

13 Look up the Rikitake attractor online. It isn't as "famous" as the Lorenz or Roessler attractors.

 165

 gluOrtho2D(-7.5, 7.5, -7.5, 7.5)

 The initial values of x, y, and z should equal 1.0 and let dt = 0.001. In addition,

modify glVertex2f to glVertex2f(x, z-5). Example plots are found in figures
Rikitake x, z-5 and Rikitake y, z-5 on page 160. Rikitake y, z-5
uses gluOrtho2D(-5.0, 5.0, -5.0, 5.0) for axis ranges and
glVertex2f(y, z-5) to properly display the points. The Rikitake attractor is
similar to the Lorenz attractor in appearance, but the dynamics in the equations are
different. Feel free to change the coloration scheme. These attractors will be more
"attractive" in 3D a bit later!

11) Look up the Rainey System attractor and see if you can plot this simple set of

equations. If you are successful, do you think the system is chaotic? This exercise
will be challenging! You may have to experiment a bit to get an interesting plot.

 Faux-3D z-change

 166

 Roessler x-z Roessler x-y

 Rikitake x, z-5 Rikitake y, z-5

 167

Section 7.2 Phase Portraits and Paint Swirls

 It should come as no surprise that Time magazine chose Isaac Newton as the 2nd
most influential person of the last millennium, behind only Gutenberg. After all, Newton
discovered the basic laws that govern the motion of the stars and planets themselves.
We still use these laws of motion to send orbiters to Mars and spacecraft to visit the
giant planets at the edge of our solar system and beyond. It was thought that by using
Newton’s laws, we could, with enough information, predict the entire future of the
universe with exquisite precision. Fast forward from Newton to the present time.
Imagine that on the desk in front of you is a pendulum. This pendulum is ideal in that it
does not suffer from friction. Once in motion, it will continue to oscillate forever (or until
you get tired of watching it swing back and forth). Now let’s also imagine that the
pendulum bob is a powerful magnet and on the desk in front of you, beneath the
pendulum, are three equally powerful magnets at the vertices of an equilateral triangle.
The table magnets are of the same polarity as the pendulum bob, so they repel the
pendulum. At rest, the pendulum hangs vertically over the center of the triangle. Now
displace the pendulum outside the triangle and let it fall toward one of the vertices. The
repelling forces of the magnets will cause the pendulum to swing and bounce erratically
from one point to another… and all the bounces and swinging are governed by Newton’s
Laws of motion. You would think that it should be easy to calculate and predict the
future motion of such a device. And you would be wrong. Not only is it NOT easy, it’s
impossible. We find ourselves back in the world of chaos once again.

 Until the advent of the computer, it was truly difficult to study chaotic motion.
Using computer graphics, though, we can qualitatively visualize the dynamics of chaotic
behavior and at least gather some indication of the behavior of such systems. What we
tend to find is that the long-term behavior of a system that appears to be random actually
has some structure to it. There is a constrained or deterministic randomness, which is,
of course, the hallmark of chaos. In the last section we looked at the continuous14 orbits
of 3D attractors and such orbits are certainly interesting. Each 3D point in space on the
Lorenz attractor, for example, represents 3 conditions of the atmosphere at that point.
One of the conditions (the x variable) is the convective motion of the atmosphere and
the other two variables represent horizontal and vertical temperature gradients. Taken
together with the right equation parameters, we get the fascinating Lorenz “Butterfly” as
a result of the 3 difference equations. There are other ways to visual chaotic behavior,
though. Are you hungry? Think of a doughnut. A mathematical doughnut is called a
torus. A torus can be made by taking a circle at the origin, moving the circle to the right
a few units, and then have the circle orbit the origin at a fixed radius. It turns out that
much chaotic behavior can be thought of as orbits inside a torus or donut. The orbit
goes around and around inside the donut, always changing its path a bit so that it never
follows the same orbit. Yet the path never leaves the torus or donut, either. We could
visualize the whole (hole?) dynamics by looking at the 3D donut/torus,15 but there is

14 Not continuous in the strict mathematical sense. Remember that we must simulate the
continuous behavior of nature by using time slices or steps in our computer simulations. In the
Lorenz and Roessler attractors, time steps were simulated using the variable dt.
15 We are not limited to 3D space. We can have 4D, 5D, or nD space as well. It’s just a little
more difficult to visualize such dynamics. You can also think of the orbits of asteroids in the
asteroid belt. The belt is a rough torus-shaped region of space between Mars and Jupiter. If you
followed a single asteroid around its orbit for several years, you would find that when it crossed a

 168

another possibility. Why not cut the donut and look at a cross-section of the paths or
orbits? The cross-section of the donut is a circle and when the orbit crosses the circle, it
will plot a point. The collection of orbit points in cross-section is called a “phase portrait”,
“Poincaire Section”, or “Poincaire Map” of the dynamical system. What will the collection
of orbit points look like over time? That’s the $64000 question!16 We’ll choose a simple
system and see. The system we’ll start with is called the Ikeda attractor and it looks a lot
like the swirl you see when mixing paint.17

PyIkedaAttractor.py

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from random import *
from numpy import *
import sys

Initial values of width and height
width = 600
height = 600

def init():
 # White background
 glClearColor(1.0, 1.0, 1.0, 0.0)

 # Ugly Purple Plot
 glColor3f(0.45, 0.3, 0.5)

 # Set the projection matrix... our "view"
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 # Set the plot window range
 gluOrtho2D(-0.75, 2.0, -2.25, 1.25)

 # Set the matrix for the object we are drawing
 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

def plotikeda():

 # Choose an initial point... any point
 x = 0.5
 y = 0.5

particular region of space… a circular cross-section of space, that it would be in a different
location each orbit.
16 I think this used to be the title of a game show on television. I’m too young to remember such
distant happenings, though. From what I understand, the show was “fixed” and was the focus of
several investigations.
17 Mixing is an important concept in chaos theory.

 169

 glClear(GL_COLOR_BUFFER_BIT)

 for n in range(0,100000):
 temp = 0.4 - 7.7/(1+x*x + y*y)
 xx = 1 + 0.9*(x*cos(temp) - y*sin(temp))
 y = 0.9*(x*sin(temp) + y*cos(temp))
 x = xx

 #glColor3f(cos(x), sin(y), tan(x))
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()

def keyboard(key, x, y):
 # Allows us to quit by pressing 'Esc' or 'q'
 if key == chr(27):
 sys.exit()
 if key == "q":
 sys.exit()

def main():
 glutInit(sys.argv)
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE)
 glutInitWindowPosition(100,100)
 glutInitWindowSize(width,height)
 glutCreateWindow("The Ikeda Attractor")
 glutDisplayFunc(plotikeda)
 glutKeyboardFunc(keyboard)

 init()
 glutMainLoop()

main()

End Program

 The resulting plot is shown in figure Ikeda below. It does indeed look like a swirl
of paint. The simplicity of the overall shape of the plot reveals structure in the attractor
that would not be apparent from the numerical values generated by the equations for the
system. The individual points are plotted, seemingly at random times and locations, yet
the shape of the graph is distinct and does not change from run to run. You should be
able to tell by now that we are plotting 100000 points (how do you know this?) using the
Ikeda system of equations. The equations are a bit more complex than the Roessler or
Lorenz, but they are wired together in much the same fashion. You can uncomment the
glColor3f statement to provide a bit more spice to the graph if you wish. Also notice
that the gluOrtho2D(-0.75, 2.0, -2.25, 1.25) statement is not centered on
the origin and is not "square" even though the graphics window IS square. You might try
modifying this to gluOrtho2D(-2.25, 2.25, -2.25, 2.25) and see how the new
windows dimensions alter the view of the attractor.

 170

 What does the Ikeda attractor represent? It represents the time evolution of an
optical cavity containing a nonlinear dielectric subjected to a periodic string of light
pulses.18 I’m not certain what that means, either, but it sounds important. What we
need to understand, though, is that prior to computers we would have had a difficult time
analyzing any chaotic system, much less this one. A scientist familiar with the physics
represented here would no doubt have an “Aha!” moment when viewing this graph.

 Ikeda

Note: You may be wondering about the absence of global variables? Any variable
defined outside a function, such as width and height in this program, can be "seen"
throughout the entire program so we can automatically assume that such variables are
global "read-only" variables. However, if you want to change the value of a global
variable in a function, you MUST declare the variable as global both outside the
function and inside the function as we have previously seen. In this program, we do not
intend to change the value of width and height. We only need to use those values to
initialize the window dimensions.

Exercises

1) Google the Ikeda attractor and look at its history and definition.

2) As in other topics we have studied, experiment with the parameters and equations in

this program and see if you can find other attractor shapes. Make certain you keep a
copy of the original program for reference.

18 http://www-chaos.umd.edu/misc/attractorpics.html

 171

3) Try plotting more or fewer points and see how the attractor is affected. Also
experiment with the color as a function of the variables in the equations.

 172

Section 7.3 Mira (Look?)

 Another attractor that displays enormous sensitivity to the initial values of the
parameters is the Gumowski-Mira attractor. We can use most of the skeleton code
(remember pyskel.py?) from the Ikeda attractor to create the Mira attractor. The
changes are as follows. In the def init(): function:

 gluOrtho2D(-20.0, 20.0, -20.0, 20.0)

The plotmira display function is listed below:

def plotmira():
 glClear(GL_COLOR_BUFFER_BIT)

 # Initial values for parameters
 # This attractor is very sensitive
 # To the values for x, y, a, and b
 x = 12
 y = 0
 a = 0.301
 b = 0.9998
 c = 2 - 2*a
 w = a*x + c*x*x/(1+x*x)

 # Plot a significant number of points
 for n in arange(0,100000):
 z = x
 x = b*y + w
 u = x*x
 w = a*x + c*u/(1 + u)
 y = w - z

 # Don't plot anything until we've hit the attractor
 if n > 100:
 # How does this color statement work?
 glColor3f(sqrt(x*x + y*y)/15, 0.0, 0.0)
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()

 # End function

 You must also remember to change the glutDisplayFunc() statement in def
main(): to glutDisplayFunc(plotmira) to reflect the renaming of the display
function to def plotmira():. You should also change the display window caption to

 173

something like "The Mira Attractor".19 The Mira attractor generated by this particular
code and set of parameters is displayed in figure Mira below.

 Mira

 The patterns you can create with the Mira code are amazing and are extremely
sensitive to each of the parameters listed. For example, change the initial x,y point
from x = 12 and y = 0 to x = 15 and y = 0 and change parameter a from a =
0.301 to a = 0.7 and see what happens. Different, right? Now try a = 0.107. You
may want to change the gluOrtho2D statement to something similar to
gluOrtho2D(-15.0, 15.0, -15.0, 15.0) to shrink the window and enlarge the
attractor.20 This latest version of the Mira attractor is displayed in the figure Mira a =
0.107. at the end of the exercises.

 The equations for the Gumowski-Mira attractor originated in the particle physics
experiments conducted at CERN in Switzerland. The orbits of high energy particles
such as protons must be stable within the accelerator ring. Gumowski and Mira
developed their attractor model to explore the paths these elementary particles take at
high energies.21 The result was apparently useful to physics, but certainly beautiful to
those of us who are not professional physicists.

19 Where and how do you accomplish this task?
20 Be prepared to do this anytime you need to change the size of a drawing. There are two ways
to increase the size of an object: you can simply increase the size of the object or you can shrink
the display window. Both work equally well and result in the same effect.
21 Lauwerier, Hans (1991). "Fractals: Endlessly Repeated Geometrical Figures”. Princeton
Science Library. pp. 136-137.

 174

Exercises

1) Google the Gumowski-Mira attractor. What is the gingerbread attractor? Can you

create the gingerbread attractor on your computer?

2) Continue to explore various starting values for x and y. Also explore different
parameter values for a and b. Try plotting more or fewer points and see how this
affects the resulting graph.

3) Change the equations and see if you can create your own attractor. If so, you can
name it after yourself.

 Mira a = 0.107

 175

Section 7.4 The 3-Body Problem

 When Isaac Newton discovered the laws of motion, he quickly found the solution
to the problem of the gravitational effects and resulting paths of two bodies in orbit
around each other. From this success, he reasoned that there were similar “easy”
solutions for the gravitational motion of any number of objects. However, when others,22
particularly Henri Poincaire, attempted to find an analytical solution for Newton's
equations involving just 3 bodies, the problem was impossible to solve. Poincaire had
discovered chaos in a relatively simple orbital model.

 As a result of work by Henon,23 a system of equations was developed to explore
the phase portrait or Poincaire map of the 3-body problem. Remember that we can
consider a phase portrait to be a cross-section in time of the orbit of a system around the
interior of a torus... in other words, a view of the face of a donut slice. The phase portrait
plotted in this section shows that far from being completely random, the motion of 3
bodies in space is chaotic, but definitely under the influence of deterministic equations.
There is structure in the phase portrait! As in the Mira attractor, we can use much of the
code in the Ikeda program as a template for this section. First, modify the gluOrtho2D
statement as follows:

 gluOrtho2D(-1.0, 1.0, -1.0, 1.0)

and change the def plotfunc(): function to:

def plot3Body():
 a = 1.16

 glClear(GL_COLOR_BUFFER_BIT)

 for x in arange(0,1.0, 0.05):
 for y in arange(0,1.0, 0.05):
 for i in arange(1,1000):
 xx = x*cos(a) - (y-x*x)*sin(a)
 y = x*sin(a) + (y-x*x)*cos(a)
 x = xx

 if x > 1.0 or x < -1.0 or y > 1.0 or y < -1.0:
 break
 glColor3f(cos(i),sin(i),tan(i))
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()

 # End Function

22 Stewart, Ian (2002). “Does God Play Dice? The New Mathematics of Chaos”. Blackwell
Publishing, Second Edition. pp. 49-63
23 Ibid pp. 140-142, also Lauwerier pp. 128-133

 176

 Make certain you the change the glutDisplayFunc() statement in def
main(): to glutDisplayFunc(plot3Body) to reflect the renaming of the display
function to def plot3Body():. There are some new concepts in this program that
need some explanation. Let’s start with the complicated conditional statement in the
def plot3Body(): function. In the course of running this program, the values for x
and y can exceed the limits of the glVertex2f command and an error will occur. To
see this firsthand, comment out the following statements as follows:

 # if x > 1.0 or x < -1.0 or y > 1.0 or y < -1.0:
 # break

 The error that is eventually generated stops program execution immediately and
we do not see the complete plot of the attractor. The purpose of the if conditional and
subsequent break statements is to catch the error before it occurs. If we exceed the
plot limits we specified in the gluOrtho2D(-1.0, 1.0, -1.0, 1.0), then we want
to skip that particular point. In other words, if x is greater than 1.0 or x is less than -1.0
or if y is greater than 1.0 or y is less then -1.0, the plot would be outside the screen
limits and we couldn’t see it at all. Why even try to plot that point? Also, the values
generated for x and y actually exceed the limitations of the glVertex2f statement
during some calculations. We need to either correct this behavior or catch it so that it
doesn’t affect program execution. What happens in the conditional statement is that
when the problem occurs, we immediately break out of the current loop and try the next
value for x or y. This prevents the program error from occurring. Remember this little
trick in your own projects when errors occur! NOTE: The latest version of Python (2.5)
and numpy did not generate an error in this section of code. However, remember this tip
to circumvent errors should they occur in any of your programs. We could also write the
if conditional as follows:

 if abs(x) > 1.0 or abs(y) > 1.0:
 break

Why would this work? What is the purpose of the abs() function?

 The next and most important explanation concerns the series of nested loops:

 for x in arange(0,1.0, 0.05):
 for y in arange(0,1.0, 0.05):
 for i in arange(1,1000):

 One difference in this program when compared with previous examples is that in
previous plots, we’ve taken a single point (as in the Mira attractor) or a random series of
points (as in the Barnsley Fern) as input into our equation system. In this program, we
are actually systematically sampling every24 (x,y) point in quadrant I of the standard
Cartesian coordinate system (stepping by 0.05) and using these points as our initial
equation input values. This is the purpose of the nested loop structure; to provide us

24 Obviously not EVERY point. In this example, we are sampling every 0.05 points from 0.0 to
0.95. The idea is that we are looking at a series of points that cover the coordinate system and
running those points through our equations. We’ll be doing this again in the fractal sections of
this chapter.

 177

with all (x,y) ordered pairs within the limits of our loop statements. In the outer loop,
we start by assigning x = 0.0 (how?) and sample each 0.05 units until x = 0.95.
For each value of x, we use the nested y loop to sample every y value from 0.0 to 0.95,
stepping again by 0.05. This will result in the series of coordinates

 (0.0, 0.0)
 (0.0, 0.05)
 (0.0, 0.10)
 .
 .
 (0.0, 0.95)
 (0.05, 0.0)
 (0.05, 0.05)
 (0.05, 0.10)
 .
 .
 (0.90, 0.95)
 (0.95, 0.0)
 (0.95, 0.05)
 .
 .
 (0.95, 0.90)
 (0.95, 0.95)

 You can visualize this by imagining a matrix of dots in the graphics window, with
each “dot” representing an (x,y) ordered pair from the nested loops. Once we’ve
chosen an ordered pair with our x and y loops, we use the i loop to iterate the ordered
pair 1000 times in our equations to see what happens. The resulting plot is shown in the
Figure 3-Body at the end of the exercises. Notice the chaotic behavior in the outer
fringes of the plot!

 You can easily see the effect of the nested loops by simply choosing a single
(x,y) ordered pair rather than taking a systematic sampling. Alter the def
plot3body(): function as follows:

def plot3Body():
 a = 1.16

 # A fixed x,y point
 x = 0.475
 y = 0.455

 glClear(GL_COLOR_BUFFER_BIT)

 #for x in arange(0,1.0,.05):
 # for y in arange(0,1.0,.05):
 for i in arange(1,1000):
 xx = x*cos(a) - (y-x*x)*sin(a)
 y = x*sin(a) + (y-x*x)*cos(a)
 x = xx

 178

 if x > 1.0 or x < -1.0 or y > 1.0 or y < -1.0:
 break
 glColor3f(cos(i),sin(i),tan(i))
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()

 # End Function

 Pay close attention to the change in the indentations after commenting both outer
for loops! This indentation modification is necessary for this program to run.
Remember that Python is very strict about indenting. If you run the program with the
changes above, you’ll see something like figure Fixed Init x-y after the exercises.
This illustrates the orbit of a single fixed point, the ordered pair (0.475, 0.455). Notice
this orbit is NOT chaotic and represents a stable pattern of motion over time. The
attractor illustrated in Figure 3-Body is the result of adding ALL of the plots from the
systematic sampling of each (x,y) ordered pair in the nested loop structure.

Exercises

1) There are a number of explorations that we can perform with this program. First,

make certain that the program listing for the def plot3Body(): function is in its
original configuration. Now experiment with changing the a parameter. Here are
some values you can try one at a time. Which values for a lead to chaotic regimes?
Can you predict what values for a will result in chaos? The results of each of these
initial a parameters are found in the appropriate figures at the end of the exercises.

a = 1.33
a = 1.58
a = 2.0
a = 2.04
a = 2.21
a = 2.71

 Now try some of your own values for a. What happens if a > 3.0? a < 1.0?

2) Try changing the number of iterations in the for i loop to something other than

1000. What does the plot look like with 100 iterations? How about 10000
iterations?

3) In the example program for this section, we started both the x and y loops at 0.

What happens if you start at 0.5 for both loops? How about 0.75? You may have to
adjust the step to get a plot that is pleasing to the eye. Look at exercise 4 for details.

4) What happens if you step by something other than 0.05 in the for x and for y

loops? Try stepping by 0.1 and then by 0.001. What is the difference in the plots?

 179

5) The coloration of the 3-Body plot is provided by the sin(i) function within the
glColor3f statement in def plot3Body():. Explore different functions (trig or
otherwise) for coloration. Try using x, y, and i as indices for any functions you
create. Remember that if you want the coloration to vary within the plot, you must
provide some variables or parameters that vary. In this program, x, y, and i vary
accordingly. x and y vary according to the equations and i varies according to the
for i loop. Invent some functions using these variables for unique color schemes.

6) The GingerBread Man Fractal is interesting in that the plot actually looks humanoid.

In order to create the fractal, first modify the gluOrtho2D function as follows:

 gluOrtho2D(-8.0, 10.0, -8.0, 10.0)

Then make certain your def plotfunc(): function looks like the following:

 def plotfunc():
 glClear(GL_COLOR_BUFFER_BIT)

 # Initial values for parameters
 # This attractor is very sensitive
 # To the values for x, y, a, and b
 x = -0.1
 y = 0

 # Plot a significant number of points
 for n in arange(0,50000):
 xx = 1 - y + abs(x)
 y = x
 x = xx

 # Don't plot until we've hit the attractor
 if n > 100:
 # How does this color statement work?
 glColor3f(sqrt(x*x+y*y)/15, 0.0, 0.0)
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()

 The result can be seen in the GingerBread Man figure at the end of the
exercises. Feel free to experiment with this fractal! Who knows what monstrosities
you might create?

7) This exercise is a challenge. Google for the Henon strange attractor. Your

assignment is to write a program that displays the Henon strange attractor. You may
use the programs we’ve written in this chapter as models if that helps. Pay particular
attention to the equations and starting parameters (a, b, c, etc) needed to plot the
Henon attractor. See figure Henon at the end of the figure set for an example of a
Henon attractor plot. It doesn't appear very impressive, but this is attractor is famous
in the history of chaos theory.

 180

 3-Body Fixed Init x-y

 a = 1.33 a = 1.58

 181

 a = 2.0 a = 2.04

 a = 2.21 a = 2.71

 182

 Henon GingerBread Man

 183

Section 7.5 Newton’s Method and the Complex Plane

 As stated earlier in the text, it is almost impossible to overstate the importance of
Isaac Newton in the fields of mathematics and physics. Newton is responsible for the
invention (or discovery?) of the calculus and its applications in the sciences.25 In this
section we are going to explore Newton’s method for finding the roots of a polynomial
equation and we are going to apply the method in the complex plane to generate some
remarkable fractal images. Newton’s method uses the concept of a derivative to
calculate the roots of a polynomial equation via the process of iteration. You already
know that you can easily solve equations such as 3x – 7 = 2. Equations such as x2 – 3x
+ 1 = 0 may be solved by factoring or by using the quadratic formula. Cubic equations
such as x3 – 3x2 + 5x - 1 are a bit more difficult, but there does exist a cubic formula for
this purpose. However, the quartic formula is a nasty thing26 and the quintic formula
(and above) does not exist. So how can we find the roots to such equations? One
answer is by Newton’s method.

 Newton’s method is an iterative equation that is represented as follows:

)('
)(

0

0
01 xf

xfxx −=

 In order to use Newton’s method, we must supply an initial seed or “guess”
concerning the root of the equation (this is x0) and subtract from this seed value the
quotient of the function at x0 divided by the derivative of the function at x0. This results in
a new value x1, which is then used as input for the next calculation. In most cases the
iteration of this equation will converge on one of the roots of the polynomial function you
are working with. To find all the roots of a higher order polynomial would require a seed
value near each root, but in most cases this can be accomplished, especially if the
function has been plotted and the roots approximated. There are some instances where
Newton’s method does not converge to a root. This can be caused by a poor initial
guess or by a function that has no real roots.

 An example of Newton’s method at work can be seen in the simple square root
function. Let’s assume that we wish to calculate the square root of 5. We can express
this as an equation, x2 = 5 or x2 – 5 = 0. The derivative27 of x2 – 5 is 2x, so we can
rewrite Newton’s equation as:

0

2
0

01 2
5

x
xxx −

−=

25 Leibniz also invented/discovered the calculus independently of Newton at about the same time.
26 http://planetmath.org/encyclopedia/QuarticFormula.html
27 Finding derivatives is a large portion of a first semester calculus class. In this text, I’ll supply
them for you. You really should take calculus… it’s an amazing subject and is the gateway to
higher mathematics.

 184

 Now let’s use this equation to find the square root of 5. First, we’ll choose an
initial guess of 2 for the square root of 5. Plugging 2 into the equation as follows:

)2(2
522

2

1
−

−=x

results in a value of 2.25 for x1. Using 2.25 as the next value for x0 yields
2.23611111111. Iterating twice more will provide a stable solution of 2.2360679775,
which isn’t the exact square root of 5,28 but it’s accurate to 10 decimal places! Since x2 –
5 = 0 is a function of degree 2, from your algebra classes you know that it has two roots.
In this example, both roots are real and we can find the other root by using -2.00 as the
initial seed. After just a few iterations we find a value -2.2360679775 for the second
root. When using Newton’s method, it helps to know a little bit about the function you
are studying29 so that you can choose initial root values that have a good chance of
converging to a stable value.

 Some functions, though, do not have real roots or have a combination of real and
complex30 roots. Examples are x2 + 1 = 0, which has no real roots and two complex
roots31 and x3 – 1 = 0 which has one real root and two complex roots. We can directly
view the real root of this equation by using the function plotting program from section
5.2. Figure x3 – 1 = 0 on the next page displays this function. Setting $axrng =
2.0 in this plot, we can see that the function crosses the x axis at 1.0, the only real root
of this function. There are also two complex roots for this equation. Can we use
Newton’s method to visualize these roots? Perhaps we can, but we need to bring in
some additional information first. You should be familiar with the concept of a number
line. All real numbers can be placed on a number line with zero in the center and
extending to negative infinity on the left and positive infinity on the right. Let’s expand
the number line to include the complex numbers. We’ll do this by using the traditional
Cartesian x-y coordinate plane and placing the complex numbers on the y axis. Any
complex number such as 4 + 3i can be plotted in this new coordinate system by an
ordered pair, in this case by (4, 3i). The x-i coordinate system can be called the complex
coordinate plane and figure 7.2 illustrates this plane and the (4, 3i) example point.

 Doing arithmetic with complex numbers can be a bit tricky. Addition and
subtraction is simple and is exactly like the addition and subtraction of regular ordered
pairs of numbers, for example (3 + 4i) + (5 - 2i) = (8 + 2i). Multiplication and division are
a bit more difficult. First, we need to remember that i2 = -1, i3 = -i, and i4 = 1. Multiplying
(3 + 4i) (5 - 2i) yields (15 + 20i - 6i -8i2), which simplifies to (15 + 14i -8(-1)) = (23 + 14i).
With division, we multiply both the complex numerator and the complex denominator by
the complex conjugate of the denominator. This produces a real number in the
denominator and division then becomes possible. An example would be (3 + 4i) / (5 -
2i). Multiplying both the numerator and denominator by (5 + 2i) gives us [(3 + 4i)(5 +
2i)/(5 - 2i)(5 + 2i)]. This simplifies to (7 + 26i)/29 or after dividing both 7 and 26i by 29,

28 Why?
29 Hint: Plot the function!
30 You may have heard the phrase “imaginary roots” in reference sqrt(-1). This is an unfortunate
usage. There is NOTHING imaginary about sqrt(-1) as we’ll soon find out!
31 Remember, there will be the same number of roots as the degree of the function regardless of
whether the roots are real or complex.

 185

(0.241379 + 0.896552i).32 We can also find the distance from any complex ordered pair
to the origin (or any other complex ordered pair) by using the Pythagorean Theorem or
distance formula. The distance from (4 + 3i) to the origin is simply sqrt(42 + 32). We
will be using these concepts to create the amazing (literally!) fractals in this and the next
two sections.

 x3 – 1 = 0

32 Whew! Don't worry about this overmuch. Python handles complex arithmetic automatically!

 186

 Figure 7.2

 So what does all this have to do with Newton's method? Let's see by using a
computer program to display the complex roots of x2 + 1 = 0. We are going to substitute
the variable z33 for x in this equation, so we'll be looking at the function z2 + 1 = 0. Here
is the listing. Some explanations will be required, so hang in there!

PyNewton.py
Newton's Method in the complex plane

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from numpy import *
import sys

If psyco isn't installed, delete the next two lines!
import psyco
psyco.full()

Global variables for screen dimensions, axis range
and loop step size
width = 400
height = 400
axrng = 2.0
hstep = 2*axrng/width
vstep = 2*axrng/height

33 "z" is a traditional variable used to represent complex numbers.

 187

def init():
 # Black background
 glClearColor(0.0, 0.0, 0.0, 0.0)
 gluOrtho2D(-axrng,axrng,-axrng,axrng)

def drawnewton():
 glClear(GL_COLOR_BUFFER_BIT)

 y = axrng
 while y > -axrng:
 y -= vstep
 x = -axrng
 while x < axrng:
 x += hstep

 n = 0

 # define the current complex number
 # using the x,y pixel values
 z = complex(x,y)

 endit = 0

 # 1000 iterations at maximum

while n < 1000 and endit == 0:
 n+=1
 old = z

 # Newton's Method Equation
 z = z - (z**2 + 1)/(2*z)

 if abs(z - old) < 0.000001:
 endit = 1

 # Pick color parameters based on quadrant

if z.imag >= 0 and z.real < 1:
 c1 = 6
 c2 = 12
 c3 = 18

 elif z.imag < 0 and z.real < 1:
 c1 = 18
 c2 = 6
 c3 = 12

 if z.real > 0:
 c1 = 12
 c2 = 18
 c3 = 6

 glColor3ub(n*c1,n*c2,n*c3)
 glBegin(GL_POINTS)

 188

 glVertex2f(x,y)
 glEnd()
 glFlush()

def main():
 glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE)
 glutInitWindowPosition(50, 50)
 glutInitWindowSize(width, height)
 glutInit(sys.argv)
 glutCreateWindow("Newton's Madness")
 glutDisplayFunc(drawnewton)
 init()
 glutMainLoop()

main()

End Program

 The Python numpy module also contains complex34 arithmetical routines. This is
absolutely great for our purposes! Now for a short aside… It is my hope that by seeing
the fantastic graphics we have been plotting (and will continue to create… the best is yet
to be!), that you will become more interested in the mathematics behind the graphics.
For this reason, the focus of this course is more on the "pretty pictures" and how to
make them rather than on theory. As you continue to study mathematics, perhaps you
will be able to fill in the background material and say "So that's how it works!" Anyway,
with the numpy module loaded, we can perform complex arithmetic, including complex
trig functions without worrying about whether we have the mathematical details of
complex functions correct.

 The creation of fractal drawings is very calculation intensive, so be prepared to
wait for these plots to complete. Sometimes several minutes may pass before the plot is
finished. This seems like an eternity while you are watching the screen update line by
line, but remember that just a few short years ago, such plots would have taken hours or
even days to finish!

 The two lines:

import psyco
psyco.full()

are optional. The psyco module, if installed, will speed up Python program execution
noticeably in most instances. As stated previously, the creation of fractal drawings is
very calculation intensive, so any increase in speed is welcome. This module is free and
is available for downloading on the internet. If you don’t have the psyco module, omit
both of these lines from your program.

 Next we define some variables for use within the program.

width = 400

34 Not “complex” as in complicated, but complex as in sqrt(-1).

 189

height = 400
axrng = 2.0
hstep = 2*axrng/width
vstep = 2*axrng/height

 The window width and height are self-explanatory. We are using a smaller value
here (400) in order to speed up the plot somewhat. If you have the patience, you can
increase this value to 500 or 600. The beauty of the fractal is more evident at this larger
window size, but it takes considerably more time to plot the graphic display! The
variable axrng allows us to set the viewing window virtual size from –axrng to axrng
in the gluOrtho2D statement. In this case, we are using 2.0, which will give us x and
y35 ranges from -2.00 to 2.00. In this and subsequent programs in this chapter, we need
to look at or calculate values for every single pixel in the viewing window. The hstep
and vstep assignment statements automatically do this for us. We calculate the hstep
and vstep values by first doubling axrng, which serves to encompass the entire width
of the x axis and height of the y axis. We then divide by the width and height of the
window in pixels. The values obtained assure us that we “visit” each pixel in the window.
We can then change the window dimensions and axrng and be certain that we’ll still
have the proper pixel step. By the way, if we were to increase the window size to
1000x1000, we would have to perform calculations on 1 million individual pixels!

 The def init(): statement is similar to past programs. You may have
wondered what happened to the def reshape(): function? You may add that
subroutine if you like, but remember to add a glutReshapeFunc(reshape) to your
def main(): program listing. For now, though, I’m trying to keep the program listings
as short and simple as possible due to the complexity of the fractal programs.

 In the def drawnewton(): function, we see a new kind of loop structure.

 y = axrng
 while y > -axrng:
 y -= vstep
 x = -axrng
 while x < axrng:
 x += hstep

 This is an example of a nested loop similar to the for nested loops in the last
section.36 Our goal in this program is to visit every pixel in the display window, so we
start y at the value for axrng. In this example program the initial value for y would be
2.0. The while y > -axrng: statement can be interpreted loosely as follows: “as
long as y is greater than –axrng, keep doing the indented stuff below.” We decrease y
each loop iteration by the vstep value (in y -= vstep) and then we encounter the
while x < axrng: loop, which can be interpreted in a similar fashion as the y loop.
For each single value of the y loop, we traverse the entire x loop. What this means is

35 Or “i” range, since we are using the complex plane.
36 So why not use for loops? We could, but part of the purpose of this text is to learn some
programming skills, hence the use of another looping method. If you want, see if you can rewrite
this program using only for loops.

 190

that we start with the upper left hand pixel (y = axrng) and one row of pixels at a time,
we cover the entire window. Pay VERY close attention to the indentations in this listing.
Again, indentation errors are a major source of problems in Python programs.

 Once we begin the loop process, we initialize two "flag" variables and define our
complex number seed or initial root guess based on the current x,y pixel value. The
pertinent program statements are:

 n = 0

 # define the current complex number
 # using the x,y pixel values
 z = complex(x,y)

 endit = 0

We will use the variable n to count the number of iterations used for Newton’s method.
The endit variable, which we’ll discuss in more detail in a moment, provides an early
escape from the loop if certain conditions are met. The critical line is the z =
complex(x,y) statement. This line takes the current values of x and y (starting with x
= -2.0 and y = 2.0) and converts the ordered pair for each pixel to a complex
number. The complex(x,y) command is provided by the numpy module at the
beginning of the program.

 Newton’s method is implemented in the next section:

 # 1000 iterations at maximum
 while n < 1000 and endit == 0:
 n+=1
 old = z

 # Newton's Method Equation
 z = z - (z**2 + 1)/(2*z)

 if abs(z - old) < 0.000001:
 endit = 1

 Using another while loop, we arbitrarily decided to allow 1000 iterations as a
maximum number37 and also to provide an early exit from the loop if the variable endit
is anything other than zero. Notice that the loop continues only if BOTH conditions (n <
1000 AND endit == 0) are true. After the while statement, we increment the
counter variable n (add 1 to n) and set the variable old equal to the last value for z,
which holds the previous root calculation. We need the variable old so that we can
compare the last value for the root of the equation to the new calculated value. The line
z = z - (z**2 + 1)/(2*z) holds the equation (x2 + 1) and its derivative (2*x)
converted to complex expressions involving the variable z and written according to
Newton’s formula. The z variables on the right of the = sign hold the initial root seed

37 100 iterations is probably more than enough to allow convergence to a root. You can
experiment with fewer iterations (or more) if you wish.

 191

and all subsequent iterations. The calculation based on the previous value of z is then
stored as the new z on the left side of the = sign.

 Finally, we check to see if the difference between the latest z value and the last z
value (stored in old) is small, in this case less than one millionth. If so, then we’ve
probably converged to a root and we can end the iterations for this particular pixel and
associated complex ordered pair. When endit = 1, the while loop stops and we can
then plot the result. In other words, all the loop structures take each pixel in the graphics
window, convert each pixel’s ordered pair to a complex number, and run the resulting
complex number through Newton’s method to see what happens. We then plot the
result in the next section:

 # Pick color parameters based on quadrant

if z.imag >= 0 and z.real < 1:
 c1 = 6
 c2 = 12
 c3 = 18

 elif z.imag < 0 and z.real < 1:
 c1 = 18
 c2 = 6
 c3 = 12

 if z.real > 0:
 c1 = 12
 c2 = 18
 c3 = 6

 glColor3ub(n*c1,n*c2,n*c3)
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()

The z.real and z.imag variables represent the vertical and horizontal complex plane
coordinates, analogous to the x and y variables in the standard Cartesian coordinate
system. You can think of these variables as x and y values respectively. We are basing
the plot coloration on both of the x (z.real) and y (z.imag) values. The signs of these
values determine the quadrant we are in (I, II, III, or IV) and we are basing the coloration
on the quadrant. Finally, the def main(): function is basically the same as in
previous programs, reflecting only the changes in function names. Notice the slight
difference in the glColor statement. The “ub” ending stands for “unsigned byte” and is
essentially an integer from 0-255 rather than a floating point value from 0-1.0. This
means that you can also assign color based on a statement such as
glColor3ub(200, 125, 98) as well as glColor3f(0.88, 0.56, 1.0).

 If everything worked properly, you should see something like figure z2 + 1
below.

 192

 z2 + 1

 The two circular basins of attraction on the y or complex i axis represent the two
complex roots for this equation. Now that we know a bit more about Newton's Method
and complex numbers, let's return to the more interesting equation x3 – 1 = 0, which
is another way of expressing the cube root of one and we will represent as z3 – 1 = 0
in the program. We discussed this function earlier in this section and now we'll see what
we can find out about the roots of the equation. Remember that this equation has one
real root and two complex roots. To enter this function into our Python program, we
need the derivative of z3 – 1. Using the power rule in calculus, we find the derivative to
be 3z2. All we need to do is change the statement z = z - (z**2 + 1)/(2*z) in
the above example to z = z - (z**3 - 1)/(3*z**2) to reflect the new z3 – 1
function and then run the program again. Please be patient! This plot will take several
minutes to complete even on a fast computer. Eventually, you should see something
like figure z3 – 1 below.

 193

 z3 – 1

 This is the classic plot generally used to display Newton’s method in the complex
plane. This plot is amazing in both its complexity and its beauty! Notice the basin of
attraction on the x or real axis and the two basins representing the complex roots to the
left of the origin and above and below the x axis. Each of the three basins represents a
root of the equation z3 – 1 = 0. The roots are found on a circle of radius 1.0 around
the origin and are respectively: z = +1.0, z = (-0.5 + i*sqrt(3)/2), and z =
(-0.5 – i*sqrt(3)/2) in clockwise order. The intricate color shades are linked.
Any seed, that is, any pixel (representing a complex ordered pair) that is blue converges
to the blue basin. Likewise the other colors converge to their respective basins. The
complexity of this fractal is infinite. Regardless of how much we magnify the convoluted
regions, we never reach the end of the intricate patterns. All three basins of attraction
are closely packed together. We are beginning to get a glimpse of the marvelous
fractals the complex plane can produce!

 In the next section, we’ll explore another type of fractal based on an iterative
process. This fractal is called the Julia set. But first, let’s try some exercises. Pay
particular attention to Exercise 5. We’ll be using the concept of “zooming” in the next
two sections. One final note: Some of these fractal images take a long time to draw.
Be patient… I think the wait is worth your time. What takes a few minutes to plot on the
computers in our lab would have taken days on the old Apple II’s!

Exercises

1) There is a tremendous amount of detail in any fractal drawing. Let’s zoom in on the

center region of the z3-1 plot. The easiest way to accomplish this would be to
change the axrng variable. Try axrng = 0.5 and see what happens. The result

 194

should look something like the figure Exercise 1 at the end of these exercises.
We’ll explore a more refined zooming technique in Exercise 5.

2) Using different polynomial functions with Newton’s method will result in different

plots. First, set axrng = 2.0 and then change the z = z - (z**2 +
1)/(2*z) statement38 to z = z - (z**5 - 1)/(5*z**4). This is the same as
finding the roots of the equation z5-1. The result is shown in the figure Exercise
2 below. Note the 5 basins of attraction corresponding to the 5 roots for this
equation. How many real and complex roots are there?

3) Using the same equation as in exercise 2, set axrng = 0.5 and run the program

again. You should see something like the figure Exercise 3 at the end of this
problem set. What happens if you zoom in even further? Try axrng = 0.05. Now
try axrng = 0.01. Why do you think an error was generated? The smaller the
axrng, the more finely divided is the graph. Could it be that we are reaching the
point where z = 0 (or almost) and that causes the overflow error? How could we fix
this problem? NOTE: Similar to an earlier exercise, the latest version of Python did
not generate an error on this exercise.

4) Change the 1000 value in while n < 1000 and endit == 0: to larger and

smaller values. Does the plot change? Also change the 0.000001 in if abs(z-
old) < 0.000001: to larger and smaller values. Again, does the plot change?

5) Coloration is always and important consideration when it comes to graphing or

plotting fractals. In this section, we are coding the coloration based on quadrant
position. What happens if you comment out the code block:

if z.imag >= 0 and z.real < 1:

 c1 = 6
 c2 = 12
 c3 = 18

 elif z.imag < 0 and z.real < 1:
 c1 = 18
 c2 = 6
 c3 = 12

 if z.real > 0:
 c1 = 12
 c2 = 18
 c3 = 6

 glColor3ub(n*c1,n*c2,n*c3)

 statements and change the glColor3ub statement to something like

glColor3f(sin(abs(z)),cos(n),sin(z.real)). The results are shown in
figure Exercise 4. Let axrng = 0.5. Experiment with coloration as you have
done in previous exercises.

38 Or the equivalent “z =” statement.

 195

6) Until this exercise, we have centered the picture about the origin using a symmetrical

window. What happens if you want to view a portion of the graph that is not centered
about the origin? We would have to change our gluOrtho2D statement and adjust
our vstep and hstep calculations to visit every pixel in the new window. First, let’s
return the Newton’s method program back to its initial state. See the program listing
in this section if you forgot to save the original version. Change the variable
initializations at the beginning of the program as follows:

 width = 400
 height = 400
 hcenter = 0.0
 vcenter = 0.0
 axrng = 2.0
 hstep = 2*axrng/width
 vstep = 2*axrng/height

 In the def init(): function, change the gluOrtho2D statement to:

gluOrtho2D(hcenter-axrng, hcenter+axrng, vcenter-axrng, vcenter+axrng)

 and then modify the while loops according to the following in the def

drawnewton(): function:

 y = vcenter + axrng
 while y > vcenter - axrng:
 y-= vstep
 x = hcenter – axrng
 while x < hcenter + axrng:
 x+= hstep

 These modifications will allow us to choose any point as a “zoom center” and an

axrng on either side of this center to magnify selected portions of our fractal
window. In the example above, we have chosen the origin (hcenter = 0.0,
vcenter = 0.0) as our new “zoom center” and have defined an axrng = 2.0 on
all sides of the new center. In this particular case, we have created a virtual graphics
window with an upper left coordinate of (-2.0, 2.0) and a lower right coordinate of
(2.0, -2.0). The while loop modifications make certain we visit each point in the
corresponding graphics window based on the axrng parameter and the new origin
we specified with the hcenter and vcenter coordinates. We also needed to
modify the gluOrtho2D statement in def init(): to gluOrtho2D(hcenter-
axrng, hcenter+axrng, vcenter-axrng, vcenter+axrng) in order for the
plot will fill the entire graphics window. If we run this program as is, we’ll get the
figure Exercise 5a, which is exactly the same as the output from figure z3 – 1.
This is what we would expect to get! Now let’s choose a different zoom center. Let’s
let hcenter = 1.0 and vcenter = 1.0, keeping axrng = 2.0. The resulting
plot is in figure Exercise 5b. Is this what you would expect? We now have a new
“origin” for the graph and it’s centered at (1.0, 1.0) with the same +/-2.0 range in both
the horizontal and vertical directions.

 196

 Now try hcenter = 1.1, vcenter = 1.45, and axrng = 0.1. You should
see something like the figure Exercise 5c. Can you tell where this object is
located in the original Exercise 5a plot? So, in conclusion, the use of the global
variables hcenter and vcenter, coupled with the axis range variable axrng will
literally allow us to move around and explore various regions of a fractal image AND
zoom into or away from each region. Make certain you understand this concept
before you go further!

7) We can also “zoom out” for a larger perspective. Set hcenter = 0.0 and

vcenter = 0.0 and then let axrng = 6.0 and see what happens. The figure
Exercise 6 illustrates the “zoom out” feature.

8) The following is a list of new equations to try. I recommend that you return the

program to its original state as presented in the first part of this section, but include
the zoom modifications we made in Exercise 5 (hcenter and vcenter). The
expression under the “/” sign is the derivative of the expression in the numerator.
You can try zooming and/or changing the origin of the graph. Experiment! Although
it probably won’t be Newton’s method, you may also make up your own equation
expressions. Remember that most of these fractals take a long time to plot, so be
patient. If you find that the program generates an overflow or math range error, see
if you can figure out what is causing the error and either fix or trap the error so it
does not occur. Figures representing each equation can be found at the end of the
exercises and labeled Exercise 7a through Exercise 7f. Hint: You can enter
several equations into your program at the same time. Simply comment out all of the
equations except the one you want to plot.

Newton's Method Equations
a) z = z - sin(z)/cos(z)
b) z = z - (z**3 + z**2 + z - 2)/(3*z**2 + 2*z + 1)
c) z = z - (z**4 + .84*z**3 + .16*z - 2)/(4*z**3 + 2.52*z**2 + .16)
d) z = z - (z**4 + .84*z**2 - .16)/(4*z**3 + 1.68*z)
e) z = z - log(z)/(1/z)
f) z = z - (z**3 - 5*z)/(3*z**2 - 5)

DON'T type the a, b, c, d, etc. Those letters are there to help you find the
appropriate figures after the exercises!

If you find that errors are generated during a plot and you can't fix or trap them, you
can have Python ignore the error completely! Here's how:

try:
 z = z – log(z)/(1/z)
 # other equations here
 # and here
except:
 pass

Essentially, this code block says "try the following statement and if an error occurs,
do whatever is after the except statement". In this case, we simply pass to the next
line of code. So, if you place try: above the equation set (indenting the equations!)

 197

and except: after the equation set (with an indented pass below except:) we
should be able to use any of these equations without the fear of generating an error.

9) We are going to take a closer look at the function z = z - sin(z)/cos(z) from
exercise 8. The figure that represents this plot is found in figure Exercise 7a.
Uncomment the equation for this function (commenting all others!) into your
Newton’s method program and modify hcenter to hcenter = 1.55 and axrng to
axrng = 0.50. These modifications should center and zoom into the interesting
figure on the right side of the graphics window. Your plot should look something like
the plot shown in figure Exercise 9a. Now set axrng = 0.30 and run the
program again. You should see something like figure Exercise 9b.

10) We don’t have to use integer powers when using Newton’s Method. We can find the

complex iteration of z3.5 – 1 just as easily as we can an integer power. Modify the
equation line as follows (or simply add this equation to your list):

 z = z - (z**3.5 - 1)/(3.5*z**2.5)

 Using the color code block from the original Newton’s Method program, we will get a

plot similar to the one shown in figure Exercise 10a. A somewhat more
interesting plot can be found by comment out the original color code block (as we did
in exercise 4) and substituting this color assignment prior to the glVertex2f
statement:

 if z.imag < 0:
 glColor3f(sin(n),cos(n),sin(z.real))
 else:
 glColor3ub(5*abs(z),cos(z.real),1.5*abs(z))

 The resulting plot is found in figure Exercise 10b. I didn’t say it was pretty!

 You can also try other z equations (with any color scheme) such as:

 z = z - (z**4.5 - 1)/(4.5*z**3.5)
 z = z – (z**4.8 – 1)/(4.8*z**3.8)
 z = z – (z**3.75 – 1)/(3.75*z**2.75)

 By now you may have some idea of how to find the derivative of a simple polynomial

function? If so, you might try making up some of your own z equations.

11) Here is a "small" list of equations you may want to try in your program. Make certain

that you comment out every equation except the one you want to try!

Newton's Method Equation
#z = z - (sin(z)/cos(z) - 1)/(1/((cos(z)*cos(z))))
#z = z - (z**4 + .84*z**2 - .16)/(4*z**3 + 1.68*z)
#z = z - (z**3 - 1)/(3*z**2)
#z = z - sin(z)/cos(z)
z = z - (z**5 - 1)/(5*z**4)
#z = z - log(z)/(1/z)
#z = z - (z**3 + z**2 + z - 2)/(3*z**2 + 2*z + 1)
#z = z - (z**4 + .84*z**3 + .16*z - 2)/(4*z**3 + 2.52*z**2 + .16)
#z = z - (z**4 + .84*z**2 - .16)/(4*z**3 + 1.68*z)

 198

#z = z - (z**3 - 5*z)/(3*z**2 - 5)
#z = z - (sin(z*z) - z*z + 1)/(2*z*cos(z*z) - 2*z)
#z = z - (z**3.7 - 1)/(3.7*z**2.7)
#z = z - (sin(z*z) - z*z*z + cos(z*z*z))/(2*z*cos(z*z) - 3*z*z - 3*z*z*sin(z*z*z))
#z = z - (z**z - 3**z - z**3 - 1)/((1+log(z))*z**z - log(3)*3**z - 3*z**2)

Can you tell which equation we are trying to plot?

One final modification you might try is to uncomment TWO equations at the same
time. What will happen? I don't know... try it! Here's what I THINK will happen. z
will be calculated using the first equation and then the complex value for z will be
"fed" to the second equation for calculation/iteration. Certainly the plot will take
longer to create. What is uncertain is how interesting the final result will be. This is
an excellent opportunity for you to experiment!

12) There are some excellent freeware fractal programs available online. I would

recommend that you Google for “fractals” and “freeware” and see what you can find.
Some of the current programs that you might find very interesting are “Xaos”,
“Chaospro”, and “Fractint”. There may be others as well. What we are programming
here can hardly be termed a professional application, but hopefully you will get the
flavor of fractals and find them interesting enough to explore them further on your
own. Another interesting program is Gnofract 4D, which runs on linux. You also
should definitely look up "Newton's Method Fractals" and see what you find. You
may be able to take the information you find online and convert the equations to a
Python program. Give yourself extra credit if you can do so!

13) One of the most important aspects of a computer program is interactivity. In a future

section we will explore mouse interaction with our graphics window. In this exercise
we are going to add some additional keyboard options. Until now, in order to view a
different Newton's Method fractal we had to comment and uncomment specific
equations. What if we could simply press a number key and have the equations
automatically change for us? Here's how we might do that. First, add a new global
variable, global newtfrac, to the variable section at the beginning of the program
and set its initial value equal to 1 (How?). Add the following def keyboard
function to your program:

 def keyboard(key, x, y):
 global newtfrac
 if key == chr(27) or key == "q":
 sys.exit()
 else:
 newtfrac = eval(key)
 if newtfrac > 0 and newtfrac < 10:
 glutPostRedisplay()

Since we are going to change the value of the newtfrac variable, we need to
declare it as global in this def keyboard function. The program will end if we
press the "q" or "Esc" keys. If we press any other key, its numeric value will be
stored in newtfrac by the eval(key) function. If this value is between 0 and 10
(in other words, 1 through 9), then we update the display. Note: What statement
must we add to def main() in order for the keyboard function to work? The real

 199

work is done in the display function. Modify your display function by changing/adding
the following:

 while n < 1000 and endit == 0:
 n+=1
 old = z

 # Newton's Method Equation
 try:
 if newtfrac == 1:
 z = z - (z**3 - 1)/(3*z**2)
 elif newtfrac == 2:
 z = z - (z**4 + .84*z**2)/(4*z**3 + 1.68*z)
 elif newtfrac == 3:
 z = z - (z**5.4-1)/(5.4*z**4.4)
 elif newtfrac == 4:
 z = z - sin(z)/cos(z)
 elif newtfrac == 5:
 z = z - (z**5 - 1)/(5*z**4)
 elif newtfrac == 6:
 z = z - log(z)/(1/z)
 elif newtfrac == 7:
 z = z - (z**3.7 - 1)/(3.7*z**2.7)
 elif newtfrac == 8:
 z = z - (3**z - 1)/(log(3)*3**z)
 else:
 z = z - (z**3 - 5*z)/(3*z**2 - 5)
 except:
 pass

 if abs(z - old) < 0.000001:
 endit = 1

The above is not completely new, obviously. Simply modify the appropriate section
of code in the def drawnewton() function to match what you see here. Run the
program. Once the original Newton's Method fractal has finished drawing, press any
number key other than 1 or 0 and see what happens. How does this work? Look
carefully at the if...elif...else code block and see if you can understand the
logic. How does this particular block of code work with the keyboard function? Why
did I not need to specifically check for the number "9"? If 9 works, why doesn't the
number "0" trigger the else statement?

 200

 Exercise 1 Exercise 2

 Exercise 3 Exercise 4

 Exercise 5a Exercise 5b

 201

 Exercise 5c Exercise 6

 Exercise 7a Exercise 7b

 Exercise 7c Exercise 7d

 202

 Exercise 7e Exercise 7f

 Exercise 9a Exercise 9b

 Exercise 10a Exercise 10b

 203

Addendum:

 I want to encourage you to explore some of these (and other) fractals on your
own. Try zooming in on various locations and see what happens. If you generate an
error message, what might be causing the error? Are you dividing by zero? Figure
glitch on the next page illustrates another type of error. In this figure, hcenter =
1.925 and axrng = 0.10 using the same equation as in Exercise 8. What caused
the dark vertical lines to appear? How might you fix this problem? Figure Fixed used
hcenter = 1.92 and axrng = 0.05. Hint: Add 1 to each denominator in the
hstep and vstep global variable assignments, i.e. (width+1).

 Glitch Fixed

Addendum II:

 One final modification you can attempt. In your ORIGINAL pynewton.py
program, change the:

 z = complex(x,y)

statement to:

 z = complex(y,x) #rotates the plot 90 degrees c-clockwise

and then try the following two equations ONE at a time:

 z = z - (z*z - 2**z - 1)/(2*z - 2**z*log(2))
 z = z - (z**3 - 3**z - 1)/(3*z**2 - 3**z*log(3))

In order, the 2 figures below illustrate the respective results. Stunning!

 204

 205

Section 7.6 The Julia Set

What would happen if you take a function such as x = x2 + 1 and iterate the
function, starting at x = 0? You would get the following results in the first 6 iterations:

 x = (0)2 + 1 x = 1
 x = (1) 2 + 1 x = 2
 x = (2) 2 + 1 x = 5
 x = (5) 2 + 1 x = 26
 x = (26) 2 + 1 x = 677
 x = (677) 2 + 1 x = 458330

 As you can see, the value for x quickly becomes very large and will grow toward
infinity as the iterations continue. Devaney39 defined the sequence of values calculated
from iterating a function the “orbit” of that function. Now let’s change the function to x =
x2 – 1 and see what happens to the orbit over 6 iterations.

 x = (0)2 - 1 x = -1
 x = (-1) 2 - 1 x = 0
 x = (0) 2 - 1 x = -1
 x = (-1) 2 - 1 x = 0
 x = (0) 2 - 1 x = -1
 x = (-1) 2 - 1 x = 0

 This is an example of a nicely behaved periodic oscillation. We will always get
these same two values no matter how long we iterate the function. You would probably
guess that if we use a function such as x = x2 + 0.5, we’ll eventually see the values
for x “run away” toward infinity and you would be correct! But what about x = x2 –
0.5? The result is not at all obvious. Here are the first 6 iterations using a hand-held
calculator:

 x = (0)2 - 0.5 x = -0.5
 x = (-0.5) 2 – 0.5 x = -0.25
 x = (-0.25) 2 – 0.5 x = -0.4375
 x = (-0.4375) 2 – 0.5 x = -0.30859375
 x = (-0.30859375) 2 – 0.5 x = -0.404769897
 x = (-0.404769897) 2 – 0.5 x = -0.33516133

 After many iterations40 the value settles down to -0.3660254037844386 and
oscillates back and forth between a 6 and 7 in the final decimal place. Finally, what
about the function x = x2 – 1.57? When iterating this equation 1 million times, the
orbit never seems to settle down at all. The final 5 iterations are:

39 Devaney, R. L. (1992). “A First Course in Chaotic Dynamical Systems”. Perseus Books:
Cambridge, MA. Pages 17-32.
40 1000 iterations using a short Python program. Can you write a program to check this?

 206

 Iter. x-value

 999996 0.002339993752693938
 999997 -1.569994576881325
 999998 0.8948829189846828
 999999 -0.7691846137615411
 1000000 -0.9783550824045962

 What would be the value for x after the 1000001st iteration? I don’t know without
checking the results of my Python program. You could even write a program to check
my work if you wish, but chances are you would not get the same results I have listed
unless you use exactly the same precision arithmetic I used41… remember chaos? Very
tiny differences in precision between our programs (or perhaps even our computers?)
would feedback and the errors would grow until our two orbits would not even be close
to each other.

 So, what’s the point of this lesson? It appears that iterated functions can do one
of 3 things. They can head toward infinity (either positive or negative), they can find a
steady state (a single value such as zero, or a sequence of repeating values), or they
can appear to behave randomly, dare I say chaotically, without any pattern at all. Things
get even more interesting if we consider complex functions. What would happen if we
were to choose a complex number such as (-0.74543, 0.11301i) and iterate this
number using at every point in the complex plane while using the same unique function?
We could set some limitations on the function such that if the function’s modulus
(distance from the calculated complex point and the origin) goes beyond a certain
distance, then we plot the point using a particular color scheme. If the point does not
stray far from the origin, then we either leave the point alone (don't plot the point) or we
use a different color scheme. The resulting plot is called a Julia Set in honor of Gaston
Julia42, a mathematician who worked with such sets prior to the advent of the computer.
Julia could only imagine what incredible "monsters" he discovered! It took the invention
of the computer for us to actually visual these sets and their incredible beauty.

 To plot a Julia Set for the complex number (-0.74543, 0.11301i), use the
following program listing:

PyJulia.py
Plot a Julia set

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from numpy import *
import sys

If psyco isn't installed, delete the next two lines!
import psyco

41 I wrote a very short QBasic program using double-precision arithmetic to calculate the orbit of
this function. If you didn’t use double-precision arithmetic and/or QBasic, you would NOT get the
same results I did. Chaos in action!
42 http://www.fractovia.org/people/julia.html

 207

psyco.full()

Initalize screen dimensions and the screen origin
width = 400
height = 400
hcenter = 0.0
vcenter = 0.0
axrng = 1.5
hstep = 2*axrng/width
vstep = 2*axrng/height

def init():
 # White background
 glClearColor(1.0, 1.0, 1.0, 1.0)

 # The next statement is all one line!!!
 gluOrtho2D(hcenter-axrng,hcenter+axrng,vcenter-
 axrng,vcenter+axrng)

def drawjulia():
 glClear(GL_COLOR_BUFFER_BIT)

 # Julia set complex number
 z = complex(-0.74543, 0.11301)

 y = vcenter + axrng
 while y > vcenter - axrng:
 y-= vstep
 x = hcenter - axrng
 while x < hcenter + axrng:
 x+= hstep

 n = 0
 a = complex(x,y)

 # n < 100 is the number of iterations
 # Increase this value to show finer detail
 # Decrease the value if nothing shows on the screen
 while n < 100:
 n+=1
 a = a**2 + z
 zz = abs(a)

 # zz > 2 is the critical escape value
 # Some functions require larger escape values
 # This zz > 2 conditional provides coloration for
 # points outside the Julia set
 if zz > 2:
 #glColor3f(sin(2*zz),cos(zz),sin(4*zz))
 #glBegin(GL_POINTS)
 #glVertex2f(x,y)
 #glEnd()

 208

 #glFlush()
 n = 5001

 # This zz < 2 conditional provides coloration for
 # points inside the Julia set.
 if zz < 2:
 glColor3f(cos(5*zz),sin(4*zz)*cos(4*zz),sin(2*zz))
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()

def main():
 glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE)
 glutInitWindowPosition(50, 50)
 glutInitWindowSize(width, height)
 glutInit(sys.argv)
 glutCreateWindow("Julia Set")
 glutDisplayFunc(drawjulia)
 init()
 glutMainLoop()

main()

End Program

 The Julia Set plot from the above listing is shown in figure Julia 1 below. If
we uncomment the lines below the if zz > 2:

 #glColor3f(sin(2*zz),cos(zz),(sin(4*zz))
 #glBegin(GL_POINTS)
 #glVertex2f(x,y)
 #glEnd()
 #glFlush()

In the def drawjulia(): function we’ll get something similar to figure Julia 2.

 209

 Julia 1 Julia 2

 The code for the Julia Set does not differ greatly from the code for Newton’s
method in the last section. The major difference is found in the display routine:

def drawjulia():
 glClear(GL_COLOR_BUFFER_BIT)

 # Julia set complex number
 z = complex(-0.74543, 0.11301)

 y = vcenter + axrng
 while y > vcenter - axrng:
 y-= vstep
 x = hcenter - axrng
 while x < hcenter + axrng:
 x+= hstep

 n = 0
 a = complex(x,y)

 # n < 100 is the number of iterations
 # Increase this value to show finer detail
 # Decrease the value if nothing shows on the screen
 while n < 100:
 n+=1
 a = a**2 + z
 zz = abs(a)

 # zz > 2 is the critical escape value
 # Some functions require larger escape values
 # This zz > 2 conditional provides coloration for
 # points outside the Julia set

 210

 if zz > 2:
 #glColor3f(sin(2*zz),cos(zz),(sin(4*zz))
 #glBegin(GL_POINTS)
 #glVertex2f(x,y)
 #glEnd()
 #glFlush()
 n = 5001

 # This zz < 2 conditional provides coloration for
 # points inside the Julia set.
 if zz < 2:
 glColor3f(cos(5*zz),sin(4*zz)*cos(4*zz),sin(2*zz))
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()

 # End Function

 Notice that we are choosing a complex number in the

 z = complex(-0.74543, 0.11301)

line near the beginning of the def drawjulia(): function. If we change the complex
number, we’ll change the appearance of the Julia Set… already we have something we
can experiment with! We then choose every single pixel in the graphics window and
change each pixel to a complex number a within the nested while loop structure using:

 a = complex(x,y)

 The Julia Set is iterated in the while n < 100: loop using the a = a**2 + z
statement. The variable z contains the original Julia Set seed and the variable a
represents the complex number corresponding to each pixel in the graphics window.
We iterate EACH pixels complex number representation until a predetermined number of
iterations is reached OR the value of the complex function exceeds a certain number or
modulus. It is known that if the orbit of the Julia Set ever exceeds a modulus43 of 2, then
the orbit will escape to infinity. That is the purpose of the lines:

 zz = abs(a)
 if zz > 2:

 If the orbit distance or modulus, which we represent with the abs(a) function,
exceeds 2, then we want to stop the iteration process and either do nothing or plot the
point, subject to the coloration functions in the glColor3f statement. Such points that
"run away to infinity" are NOT in the Julia Set. If we iterate the function 100 times and

43 Remember the modulus is the distance from the complex point to the origin. It is found by
using the Pythagorean theorem. Python takes care of the calculation for you in the abs(a)
function, where a is a complex number.

 211

the modulus does NOT exceed 2, then we know (or we think we know44) that this
particular complex number (pixel) is IN the Julia Set and we plot that point. The end
result of iterating all pixels in the window subject to the original complex number
(-0.74543, 0.11301i) is the Julia Set. I think you will agree that Julia Sets are
striking in their appearance!

 We’ll explore Julia Sets and the Julia Set code more thoroughly in the Exercises.
In the next section, we’ll end our formal 2D non-animation instruction with the
grandfather of all fractals, the Mandelbrot Set. The Mandelbrot Set serves as a catalog
of all possible Julia Sets and has been termed the most complicated mathematical
object ever discovered. Whether this is true or not is probably open to interpretation, but
the Mandelbrot Set is unforgettable in its appearance and infinitely detailed.45 As
mentioned in exercise 9 in the previous section, I strongly recommend that you obtain a
fractal freeware program to explore and create your own fractals and fractal types.

Exercises

1) Among the more obvious modifications to the Julia Set program is to change the

initial complex number. You can experiment with this on your own. Just to get you
started, try z = complex(-0.5, 0.6). I also recommend that you change the
background color to black using the glClearColor statement in def init():.
The plot from the complex number in this exercise is shown in figure Exercise 1
at the end of these exercises. Keep the range of values for both the real and the
complex numbers between -1.0 and +1.0.

2) You can create a more detailed plot by increasing the number of iterations in the

while n < 100: loop. Change the 100 to 500 and see what happens. Using the
complex number from exercise 1, the plot with 500 possible iterations is shown in
figure Exercise 2. There isn’t much difference at this zoom level, but we’ll explore
this concept more in exercise 3. What else do you notice about the creation of this
new 500 maximum iteration Julia Set? Obtaining more detail in a drawing isn’t free!
If you want, you can increase the width and height of the graphic window, but
again, a larger Julia Set plot isn't free.

3) Let’s zoom into a portion of the Julia Set we created in exercise 1 and illustrate the

concept in exercise 2 a bit more explicitly. First, set the number of iterations to a low
number by changing the iteration loop to while n < 10:. Also, set hcenter =
1.0, vcenter = -0.5, and axrng = 0.1. The resulting plot is shown in figure
Exercise 3: n<10. Not very appealing, is it? Now change the number of
iterations to 50. The difference in plots is huge and is demonstrated in figure
Exercise 3: n<50. Now change the number of iterations to 1000 (be patient!).
The result is shown in figure Exercise 3: n<1000. When creating fractal
images there is usually a trade-off between speed and the viewing of details. Notice

44 100 iterations is NOT enough to make such decisions. In order to refine the Julia Set, we need
to iterate much more than this number. 500, 1000, 10000 iterations would be better, but we don't
have that much time, do we? Actually, an infinite number of iterations would be required to
decide whether some points on the border of the Julia Set actually belonged to the set.
45 As are most (all?) fractals, including the ones generated by Newton’s Method and the Julia Set.

 212

in the upper right hand portion of the Exercise 3: n<50 and Exercise 3:
n<1000 plots. You can easily see that that n<1000 plot displays a finer level of
detail, but you have to look closely to notice the difference from the n<50 plot.
Generally, the larger the plot window, the more detailed your plot should be.
Remember, however, that the plot time will be longer. If you notice some dark
vertical line artifacts, remember how we fixed this in the last section by adding 1 to
each denominator in the hstep and vstep statements at the beginning of the
program.

There is a limit to how precisely we can draw a fractal. While fractals themselves are
infinitely defined, your computer screen is not. Details of any fractal that are less
than the size of a single pixel can't be displayed. This is why we must seek a
compromise between the number of iterations (which determines the fineness of
fractal details) and speed of drawing. Try while n<5000: and see if you can tell
the difference between 5000 iterations and 1000 iterations on your monitor. The
result of 5000 iterations is shown in figure Exercise 3: n<5000 at the end of
these exercises.

4) Adding extra color to fractal plots usually creates some interesting effects. Usually

we color fractals such as Julia and Mandelbrot sets by escape time, that is, by how
many iterations it takes for the complex point being examined to escape to infinity.
We can also color a fractal based on the distance the iterated point is from the origin
when the maximum number of iterations is reached. Look at the following Julia set
code again (# comment statements omitted):

 while n < 100:
 n+=1
 a = a**2 + z
 zz = abs(a)
 if zz > 2:
 #glColor3f(sin(2*zz),cos(zz),(sin(4*zz))
 #glBegin(GL_POINTS)
 #glVertex2f(x,y)
 #glEnd()
 #glFlush()
 n = 5001

 if zz < 2:
 glColor3f(cos(5*zz),sin(4*zz)*cos(4*zz),sin(2*zz))
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()

 Uncomment the two lines under the if zz > 2: statement and change the

glColor3f statement under the if zz < 2: to the following:

 glColor3f(sin(n)*zz,sin(n)*zz,cos(n)*tan(zz))

 213

 The coloration is now based on n, the number of iterations, and zz, the
distance of the iterated point from the origin. The first glColor3f statement colors
the points that escape to infinity46 and the second glColor3f statement colors the
points that are inside the Julia Set.47 The result of these changes is shown in figure
Exercise 4 below this exercise set. Experiment with these color statements and
see what you can create. Also, remember that you can use various axrng (zoom)
values as well as changing the initial complex number and the hcenter and
vcenter parameters. The number of possible Julia Set fractals is literally infinite!

5) In this exercise, we are going to explore a few interesting initial complex numbers

that lead to some classic Julia Sets. First, return the initial parameters back to their
starting values:

 hcenter = 0.0
 vcenter = 0.0
 axrng = 1.5

 which will return the screen center to the origin and set the axis ranges to +/- 1.5.

Also, return the remainder of the program back to its original state, including
commenting out the glColor3f and glVertex2f statements we uncommented in
the last exercise. Keep the background color black by using glClearColor(0.0,
0.0, 0.0, 1.0) in the def init(): function. Also use the original Julia Set
complex number z = complex(-.75,.1). Now change the glColor3f
statement under the if zz < 2: conditional to:

 glColor3f(tan(zz),zz*sin(zz),tan(zz))

 The resulting plot can be viewed in figure Exercise 5a. Now try the following

initial complex Julia Set seeds (each plot can be viewed in the corresponding
Exercise 5 (x,yi) figures following the exercises:

 z = complex(-1, 0.0)
 z = complex(-0.4, -0.6)
 z = complex(-1.5, 0.0)
 z = complex(-0.8, 0.0)
 z = complex(-0.1, 0.8)
 z = complex(0.3, -0.4)
 z = complex(-0.5, 0.57)
 z = complex(-0.11, 0.86)
 z = complex(0.28, 0.53)
 z = complex(-0.1, 0.75)

 What happens to the plots if you switch or change the signs of these complex

numbers? Do you see any patterns based on the initial complex coordinates? If you
try your own initial points and nothing appears, change the glColor3f statement or

46 As stated earlier, we stop iteration if the distance from the origin to the point is greater than 2.
Once the orbit of a Julia or Mandelbrot set exceeds 2, then the orbit always goes to infinity.
47 The Julia Set is actually the boundary between the interior points and the points that escape to
infinity.

 214

uncomment the glColor2f statement and its corresponding glVertex2f under
the if zz > 2: statement. You might research the glColor3ub statement and
see if you can use this command for coloration. The “ub” ending, as stated earlier,
stands for “unsigned byte” and the parameters within the glColor3ub statement
should be integers from 0-255. Coloration is critical in these fractals!

6) The main Julia Set engine for generating the unique fractal images displayed thus far

is found in the line:

 a = a**2 + z

 within the while n < 100: iteration loop. We are not limited to this expression

and can find the Julia Set of many different equation forms if we wish. To begin this
exercise, set z = complex(-0.75, 0.05) and change the second glColor3f
statement to glColor3f(tan(zz)*zz,cos(zz)*zz,tan(zz)*zz). With a
white background color, the resulting plot should resemble figure Exercise 6a
below. Now change the Julia Set equation to:

 a = sin(a) + z

 and run the program again. Be patient… trig functions take time. You should get a

plot that resembles the blobby structure in figure Exercise 6b. Not very
interesting, is it? OK, let’s experiment. First change the escape time values found in
the if zz statements from 2 to 50 in each. Run the plot again (be patient!). You
should see something like figure Exercise 6c. Hmmm… there’s some structure,
but not much else. OK, let’s zoom out. Set axrng = 5.0. Figure Exercise 6d
illustrates the result. That’s a bit better, but the colors are terrible! I’ll let you adjust
the coloration… see what you can do to make this plot more interesting. You should
also attempt to use a = cos(a) + z. What difference, if any, do you see between
the sin(a) and cos(a) plots. Look closely! How about a = tan(a) + z

7) As a continuation of exercise 6, let’s try some additional Julia Set functions. Set

axrng = 2.0, hcenter = 0, and vcenter = 0. Make the following
modifications to the appropriate portion of the def drawjulia(): function.

 while n < 200:
 n+=1
 a = exp(a) + z
 zz = abs(a)
 if zz > 200:
 glColor3f(cos(zz),sin(zz)*cos(zz),sin(zz))
 glVertex2f(x,y)
 glEnd()
 glFlush()
 n = 5001
 if zz < 200:
 glColor3f(tan(n),sin(zz),cos(n))
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()

 215

 glFlush()

 Notice the change in the conditional values in the while loop. We may be able

to use smaller escape time values. You can experiment with escape time if you
wish. The second glColor3f statement has also been changed. The new Julia
Set equation is a = exp(a) + z. This is the exponential function. The resulting
plot from these modifications is shown in figure Exercise 7.

8) Try this modification, keeping axrng, hcenter, and vcenter the same as in

exercise 7:

 while n < 200:
 n+=1
 a = a**3 + z
 zz = abs(a)
 if zz > 2:
 glColor3f(cos(zz),sin(zz)*cos(zz),sin(zz))
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()
 n = 5001
 if zz < 200:
 glColor3f(tan(zz),sin(zz),cos(n))
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()

 The resulting plot is found in figure Exercise 8 below. By now you should

have the idea that the number of different possibilities is infinite! Explore! Create!
Don’t be afraid to try something new and/or different.

9) A rather beautiful Julia Set can be found by using the complex number (-0.780737, -

0.105882i). You can see this set by changing the Julia Set seed to:

 z = complex(-0.780737,-0.105882)

 and the equation back to a = a**2 + z. Also, comment out the glColor3f and

the glVertex2f statements under the if z > 2: statement and modifying the
glColor3f statement under the if z < 2: statement as follows:

 glColor3f(3/sin(3*zz),cos(3*z.real),2*sin(zz))

 The resulting plot can be seen in figure Exercise 9. You might need to change

the number of iterations to if n < 200: or higher to get the best plot.

10) There is another method for creating a Julia Set. This method is called the inverse

iteration method. Until this exercise, we have used a Julia Set complex number seed
and iterated each pixel point in the graphics window to see if the iteration escapes to

 216

infinity or not. The general equation we used was a = a2 + z where z was the
constant complex seed used to generate the Julia Set. We can also generate a Julia
Set by taking the inverse of this equation; the complex square root. In this iteration
method, the pixel points rapidly converge to the Julia Set. The advantages of the
inverse iteration method are that we can quickly generate a Julia Set. The
disadvantage is that the Julia Set is not filled and can be somewhat incomplete. The
listing for an inverse iteration method is as follows:

 # PyInverseJulia.py
 # Plot a Julia set
 # Using inverse iteration

 from OpenGL.GL import *
 from OpenGL.GLU import *
 from OpenGL.GLUT import *
 from random import *
 from numpy import *
 import sys

 # If psyco isn't installed, delete the next two lines!
 import psyco
 psyco.full()

 axrng = 2.0
 width = 400
 height = 400

 def init():
 glClearColor(0.0, 0.0, 0.0, 0.0)
 gluOrtho2D(-axrng,axrng,-axrng,axrng)

 def drawinvjulia():
 glClear(GL_COLOR_BUFFER_BIT)

 # complex seed point... same as exercise 9
 a = complex(-0.780737,-0.105882)

 # plot 10000 points, one for each iteration
 for i in range(0,10000):
 x = 2*axrng*random()-2
 y = 2*axrng*random()-2

 n = 0
 z = complex(x,y)

 # since there are two square roots
 # we randomly choose between them
 while n < 10:
 n+=1
 if random() < 0.5:
 z = sqrt(z-a)

 217

 else:
 z = -sqrt(z-a)
 zz = abs(z)

 glColor3f(3/sin(3*zz),cos(3*z.real),2*sin(zz))
 glBegin(GL_POINTS)
 glVertex2f(z.real,z.imag)
 glEnd()
 glFlush()

 def main():
 glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE)
 glutInitWindowPosition(50, 50)
 glutInitWindowSize(width, height)
 glutInit(sys.argv)
 glutCreateWindow("Julia Set")
 glutDisplayFunc(drawinvjulia)
 init()
 glutMainLoop()

 main()

 # End Program

 Figure Exercise 10 illustrates this program. You may notice some stray points

inside the Julia Set. You can eliminate these points at the expense of program
speed by increasing the value in the while n < 10: loop to while n < 50:.
Try using different complex seeds and changing the number iterations (and points!).
You can also experiment with coloration and see the effects on the plot.

 Exercise 1 Exercise 2

 218

 Exercise 3: n<10 Exercise 3: n<50

 Exercise 3: n<1000 Exercise 3: n<5000

 Exercise 4 Exercise 5a

 219

 Exercise 5: (-1.0,0.0) Exercise 5: (-0.4, -0.6)

 Exercise 5: (-1.5,0.0) Exercise 5: (-0.8,0.0)

 Exercise 5: (-0.1,0.8) Exercise 5: (0.3,-0.4)

 220

 Exercise 5: (-0.5, 0.57) Exercise 5: (-0.11, 0.86)

 Exercise 5: (0.28, 0.53) Exercise 5: (-0.1, 0.75)

 Exercise 6a Exercise 6b

 221

 Exercise 6c Exercise 6d

 Exercise 7 Exercise 8

 Exercise 9 Exercise 10

 222

Section 7.7 Explorations with the Mandelbrot Set

 In the last section we explored the basics of the Julia Set and the iterated
function, a = a**2 + z, which leads to the determination of how the set will be
plotted. In this section, we are going to explore the Mandelbrot Set (M-Set), the parent
of the Julia Set family, on two levels. First, we are going to see how the M-Set is
created, and second, we are going to include a “cheesy” mouse routine48 that will
hopefully allow us to explore the M-Set “live” without having to change the hcenter,
vcenter, and axrng values prior to each program execution.

 The M-Set is similar to the Julia Set in that we are going to iterate all the complex
numbers found in the graphics window pane to see if those numbers escape to infinity or
remain constrained. The difference is that with the Julia Set, we chose an initial complex
number seed and then iterated each pixel after converting the coordinates of that pixel to
a complex number. With the M-Set, we are not going to pre-choose an initial complex
number seed. Rather, we are going to use each pixel in the graphics window as its own
seed and plot the results. Based on this reasoning, since each pixel in the graphics
window is a unique complex number, the M-Set is a catalog of all possible Julia Sets,
one unique Julia Set for each pixel!49 This makes the M-Set infinitely complex and
certainly worthy of our attention. The M-Set is also quite beautiful regardless of the level
of magnification. Before we go any further, though, take the time to Google the
Mandelbrot Set on the web. You’ll find a multitude of sources, so look at only a few. I
would recommend choosing sites that have “.edu” endings. As you’ll discover (or have
already discovered), the M-Set is named after Benoit Mandelbrot, who wrote one of the
pioneering texts on fractals.50

 Here is the listing of the M-Set program for this section. It is a bit more involved
than previous listings because it includes some additional mouse and keyboard
functions. After the listing I’ll attempt to clarify the new sections of code.

PyMandelBrot.py
Plot a Mandelbrot set
And include a mouse zoom

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from numpy import *
import sys

If psyco isn't installed, delete the next two lines!
import psyco
psyco.full()

Set initial window width and height
Declare global variables

48 I can hear the groans. Yes, pun intended.
49 We will attempt to demonstrate this idea in an exercise.
50 Mandelbrot, B. (1982). “The Fractal Geometry of Nature”. W. H. Freeman

 223

global width
global height
global hcenter
global vcenter
global axrng
global hstep
global vstep
global yinit
global xinit

width = 400
height = 400

def zap():
 global hcenter
 global vcenter
 global axrng
 hcenter = 0.0
 vcenter = 0.0
 axrng = 2.0
 init()

def init():
 # Identify the globals
 global hcenter
 global vcenter
 global axrng
 global hstep
 global vstep
 global yinit
 global xinit
 global yfinal
 global xfinal

 # Set the screen plotting coordinates and the step
 glClearColor(0.0, 0.0, 0.0, 0.0)
 hstep = 2*axrng/(width)
 vstep = 2*axrng/(height)
 yinit = vcenter + axrng
 xinit = hcenter - axrng
 yfinal = vcenter - axrng
 xfinal = hcenter + axrng

 # Fill the entire graphics window!
 glViewport(0, 0, width, height)

 # Set the projection matrix... our "view"
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 # Set the window plot coordinates
 gluOrtho2D(xinit,xfinal,yfinal,yinit)

 224

 # Set the matrix for the object we are drawing
 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()
 glutPostRedisplay()

def keyboard(key, x, y):
 # Allows us to quit by pressing 'Esc' or 'q'
 if key == chr(27):
 sys.exit()
 if key == "z":
 zap()
 if key == "q":
 sys.exit()

def drawmandel():
 glClear(GL_COLOR_BUFFER_BIT)

 y = yinit
 while y > yfinal:
 y -= vstep
 x = xinit
 while x < xfinal:
 x += hstep

 n = 0
 z = a = complex(x,y)

 # n < 200 is the number of iterations
 # Increase this value to show finer detail
 # However finer detail results in slower execution
 while n < 200:
 n+=1
 z = z**2 + a
 zz = abs(z)

 # zz > 2 is the critical escape value
 # Some functions require larger escape values
 # This zz > 2 conditional provides coloration for
 # points outside the M-Set set
 if zz > 2:
 # Weird colors around the M-Set
 #glColor3f(3*sin(3*z.real),cos(3/z.real),4*cos(zz))
 #glBegin(GL_POINTS)
 #glVertex2f(x,y)
 #glEnd()
 #glFlush()
 n = 5001

 # This zz < 2 conditional provides coloration for
 # points inside the M-Set.
 if zz < 2:

 225

 # Coloration in the M-Set
 #glColor3f(3/sin(3*zz),cos(3*z.real),2*sin(zz))
 glColor3f(0.9, 0.2, 0.5)
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()

def mouse(button, state, x, y):
 global hcenter
 global vcenter
 global axrng

 # Detect the left/right mouse buttons and the click
 # Followed by resetting the origin
 # Left mouse button zooms in, right button zooms out
 if button == GLUT_LEFT_BUTTON and state == GLUT_DOWN:
 axrng = axrng/2
 if button == GLUT_RIGHT_BUTTON and state == GLUT_DOWN:
 axrng = 2*axrng
 if state == GLUT_DOWN:
 hcenter = xinit + (xfinal - xinit)*x/width
 vcenter = yinit + (yfinal - yinit)*y/height
 print hcenter, vcenter
 init()

def main():
 glutInit(sys.argv)
 glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE)
 glutInitWindowPosition(50, 50)
 glutInitWindowSize(width, height)
 glutCreateWindow("Mandelbrot Set")
 glutDisplayFunc(drawmandel)
 glutMouseFunc(mouse)
 glutKeyboardFunc(keyboard)
 zap()
 glutMainLoop()

main()

End Program

 Before any explanations are given, let’s look at the one-color plot shown in figure
M-Set on the next page. If you haven’t already done so, run the program. Remember
to be patient. Fractals take time to draw! Notice the shape of the M-Set. Do you see a
Cardiod? Now left-click your mouse pointer on a point on the edge of the M-Set and see
if you can display a zoomed version. Keep zooming until you see vertical and/or
horizontal line artifacts.51 Now right-click on a portion of the graph to zoom out again.
See how small you can make the M-Set while still retaining an identifiable shape. If you

51 We’ll try to fix these artifacts in an exercise.

 226

want to return to the original state of the M-Set, make certain the graphics window has
focus52 and press the “z” key (for “zap”). Explore the M-Set by clicking on interesting
portions of the graph. Can you find M-Set miniatures hiding within the edges of the full-
size Mandelbrot Set? This plot was created by using glColor3f(0.9, 0.2, 0.5).
If you comment this statement and uncomment:

 glColor3f(3/sin(3*zz),cos(3*z.real),2*sin(zz))

you’ll see something like figure M-Set a below. Uncommenting the lines under #
Weird colors around the M-Set statement will result in figure M-Set b. Nice!

 One color is OK… but look below!
 M-Set

52 Click on the caption bar or make certain the caption bar is highlighted.

 227

 M-Set a M-Set b

 We start the M-Set program with the usual gang of import statements, followed
by a few global variables as shown below:

Set initial window width and height
Declare global variables
global width
global height
global hcenter
global vcenter
global axrng
global hstep
global vstep
global yinit
global xinit

width = 400
height = 400

 We are going to actually declare these variables as global because we want to
have the capability of changing their values during the program execution. The initial
window width and height is set to 400 as in the Newton’s Method and Julia Set
programs, but you may need to make this a bit smaller (or larger) depending on your
display resolution.

 The first function encountered is "called" from within the def main(): function
and is named def zap():

def zap():
 global hcenter
 global vcenter
 global axrng
 hcenter = 0.0
 vcenter = 0.0
 axrng = 2.0
 init()

 # End Function

 The purpose of def zap(): is to provide a method of returning a zoomed M-
Set back to its original state by setting both hcenter and vcenter back to 0.0 and
setting axrng = 2.0 or its original value. The last line of def zap(): calls the def
init(): function just as if we've restarted the program.

def init():
 # Identify the globals
 global hcenter
 global vcenter
 global axrng
 global hstep

 228

 global vstep
 global yinit
 global xinit
 global yfinal
 global xfinal
 global count

 # Set the screen plotting coordinates and the step
 glClearColor(0.0, 0.0, 0.0, 0.0)
 hstep = 2*axrng/(width+1)
 vstep = 2*axrng/(height+1)
 yinit = vcenter + axrng
 xinit = hcenter - axrng
 yfinal = vcenter - axrng
 xfinal = hcenter + axrng

 # Fill the entire graphics window!
 glViewport(0, 0, width, height)

 # Set the projection matrix... our "view"
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 # Set the window plot coordinates
 gluOrtho2D(xinit,xfinal,yfinal,yinit)

 # Set the matrix for the object we are drawing
 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()
 glutPostRedisplay()

 # End Function

 The def init(): function first declares the global variables53 found at the
beginning of the program and defines two additional globals, yfinal and xfinal.
After declaring the global variables can we clear the screen. The next six lines calculate
the hstep and vstep for the current window based on the axrng (multiplied by 2 to
encompass the entire range from –axrng to +axrng) divided by the appropriate
(width + 1) and (height + 1) values. Adding 1 to width and height helps
alleviate some of the glitches or vertical lines that appear in the graphics window when
zooming. We then calculate the initial and final x and y values (xinit, yinit,
xfinal, yfinal) for the gluOrtho2D statement based on the current hcenter,
vcenter, and axrng settings. Think about this! Read the preceding sentences again
until you understand what is happening with the graphics display! The remainder of the
function sets the viewport and the virtual window dimensions. The final
glutPostRedisplay() causes a screen refresh using the new settings. The value of
this def init(): function is in its ability to redefine the screen viewing dimensions

53 This is necessary IF we want to change the values of the variables in the def init():
function.

 229

when zooming, while repositioning the center of the viewing window using the mouse.54
It is the screen redefinition calculations and their use in gluOrtho2D that allow us to
zoom into the M-Set.

 The keyboard function has been expanded slightly to allow us the ability to
“zap” all the global variables back to their initial values, thereby returning the M-Set to its
original state.

def keyboard(key, x, y):
 # Allows us to quit by pressing 'Esc' or 'q'
 if key == chr(27):
 sys.exit()
 if key == "z":
 zap()
 if key == "q":
 sys.exit()

 # End Function

 The “z” key calls the def zap(): function, which resets the global variables
and then calls the def init(): function as described above. The def init():
function then sets the viewing window to its initial coordinates and refreshes the screen
with the original M-Set, again as described previously.

 The def drawmandel(): function is very similar to the def drawjulia():
function in the previous section of the text. The differences are that we do NOT define a
particular complex number prior to entering the while y > yfinal: loop. Remember
that in calculating the M-Set we are testing EVERY pixel point in the graphics window to
see if that point escapes to infinity or not. Therefore we do not require or want an initial
complex number seed to use in our iteration loop. The critical statement then becomes:

 z = a = complex(x,y)

 This double assignment statement sets both z and a to the same complex
number initially, based on the current x and y coordinates. The program then enters the
while n iteration loop where a is kept constant (a is the current point we are testing)
and z is iterated in the z = z**2 + a statement to see if it tends to escape toward
infinity or not. If after an arbitrary number of iterations (n < 200 in this example
program) the distance (modulus) of z (calculated by zz = abs(z)) is greater than 2,
we know the point is outside the M-Set and we can color it accordingly (or not). If after
200 iterations zz < 2, we know the point is within the M-Set and we can color those
points (or not) accordingly. The M-Set is actually the boundary between these two
regions, the exterior region where all points escape to infinity and the interior region
where all points are constrained. The M-Set is on the edge of chaos, so to speak!

 The function which handles the mouse behavior is new and is properly identified
in def main(): using the glutMouseFunc(mouse) statement. It is the mouse
function that allows us to choose a pixel for zooming and repositioning the M-Set. The

54 See the def mouse(button, state, x, y): function section.

 230

"chosen pixel" has x and y coordinates which are sent to the mouse function for
processing. The mouse function is shown and explained below:

def mouse(button, state, x, y):
 global hcenter
 global vcenter
 global axrng

 # Detect the left/right mouse buttons and the click
 # Followed by resetting the origin
 # Left mouse button zooms in, right button zooms out
 if button == GLUT_LEFT_BUTTON and state == GLUT_DOWN:
 axrng = axrng/2
 if button == GLUT_RIGHT_BUTTON and state == GLUT_DOWN:
 axrng = 2*axrng
 if state == GLUT_DOWN:
 hcenter = xinit + (xfinal - xinit)*x/width
 vcenter = yinit + (yfinal - yinit)*y/height
 print hcenter, vcenter
 init()

End Function

 The def mouse(button, state, x, y): statement contains the name55 of
the function and some variables or parameters within the parentheses. These variables
must always be present in the mouse function defined with the glutMouseFunc()
statement, although you may choose to use different variable names. The first variable,
button, stores the specific mouse button used to trigger or call the mouse function.
Possible values are GLUT_LEFT_BUTTON, GLUT_RIGHT_BUTTON, or
GLUT_MIDDLE_BUTTON depending on which mouse button was clicked to call the
mouse function. The second variable, state, holds the status of the mouse button.
The possible values are GLUT_DOWN and GLUT_UP. Each state will trigger or call the
mouse function.56 This means that you can perform a specific operation when the
mouse button is clicked (GLUT_DOWN) and another specific operation when the mouse
button is released (GLUT_UP). The final two variables, x and y, store the window pixel
coordinates of the mouse pointer when the mouse button is clicked.

 Within the def mouse(button, state, x, y): function are three
conditional statement blocks. The first:

 if button == GLUT_LEFT_BUTTON and state == GLUT_DOWN:
 axrng = axrng/2

55 Again, we don't have to call the mouse function "mouse". We can name it whatever we please
as long as we use the name in the glutMouseFunc() statement.
56 If you forget this fact, some interesting behavior can result. If you do not want an event to
occur when the mouse button is released, place the desired “mouse-triggered” behavior within
the GLUT_DOWN conditional block of code as shown in this program.

 231

is executed when the LEFT mouse button state is the DOWN position.57 The second
conditional statement:

 if button == GLUT_RIGHT_BUTTON and state == GLUT_DOWN:
 axrng = 2*axrng

catches the right mouse button click.
The third conditional statement:

 if state == GLUT_DOWN:
 hcenter = xinit + (xfinal - xinit)*x/width
 vcenter = yinit + (yfinal - yinit)*y/height
 print hcenter, vcenter
 init()

is executed ONLY when one of the mouse buttons is clicked.

 In either case, left or right button, new screen center coordinates are calculated
based on the old screen coordinate ranges and the current mouse pointer position
coordinates. The intent of the left mouse button click is to zoom in on the M-Set, so we
halve the axrng variable. If this seems contrary to common sense, think of it as a
microscope. When we move to higher magnifications, we are looking at a much smaller
field of view. If the magnification power is doubled, the field of view is halved. We are
accomplishing the same effect here by halving the axrng field of view, thereby doubling
the magnification.

 The right button click allows us to zoom out by doubling the size of the axrng
variable (doubling the field of view halves the magnification). If either mouse button is
clicked (if state == GLUT_DOWN is true), we calculate the new hcenter and
vcenter origin and then def init(): is called to implement the changes. The
print hcenter, vcenter statement prints the current screen center coordinates in
the console window for reference (these coordinates would correspond to Julia Set
"seeds"). This print statement line is not crucial to the operation of the program, but
may be useful for debugging purposes.

 The def main(): function is similar to previous programs with the exception of
the glutMouseFunc(mouse) statement.

 When you look at the M-Set you are literally looking at infinity. It is possible
(theoretically) to magnify the M-Set until it is the size of the known universe… and even
then the detailed swirls never end. You can still zoom further! Literally mountains of
papers and texts have been written about this beautiful mathematical object and still we
do not know everything there is to know about the M-Set fractal. Countless hours of
computer time have been spent58 plotting the M-Set on everything from super-computers
to hand held devices. When you explore the M-Set by zooming into specific areas it is
quite possible that after several magnifications you will be viewing something never

57 How do you know this?
58 Some might say “wasted”, but it depends on your point of view and who is paying your salary.

 232

before seen by human eyes. I think you will agree that this is a remarkable object
indeed!

 As stated previously, the M-Set represents a catalog of Julia Sets. If you recall,
we had to explicitly provide a complex number seed to the Julia Set program in order to
calculate and plot a Julia Set. The M-Set, in contrast, is created by testing every point in
the complex plane (well… at least every point represented by a pixel and within the
axrng boundaries) and plotting those points based on whether or not the iterations
escape to infinity or stay bounded. Each pixel in the M-Set thus represents a complex
seed for a unique Julia Set. It would be interesting if we could simply point and click on
a screen pixel in and around the M-Set and plot the Julia Set for that pixel. It would also
be nice to have the capability of zooming into and out of the Julia Set and then return to
the same M-Set from which we started. Such a program would be more complex than
anything we’ve done thus far, but that shouldn’t be a hindrance. Using the M-Set
program from this section as a skeleton, compare it to the following listing and make the
changes where necessary. Make certain you save this program under a new name so
that you can preserve the old M-Set program! Comments have been liberally applied to
the code to explain the purpose of each section of program.

PyMandelJulia.py
Plot a Mandelbrot set
And include a mouse zoom with
Julia Set option enabled

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from numpy import *
import sys

If psyco isn't installed, delete the next two lines!

import psyco
psyco.full()

Set initial window width and height
Declare global variables

global width
global height
global hcenter
global vcenter
global axrng
global hstep
global vstep
global yinit
global xinit

The following globals allow for the
Julia Set options

 233

global mandel
global tmprng
global julhcenter
global julvcenter
global julflag
global julx
global july

width = 400
height = 400

mandel = 1 for M-Set
mandel = 0 for Julia Set
Start with the M-Set

mandel = 1

def zap():
 # Reset everything

 global hcenter
 global vcenter
 global axrng
 global mandel
 global julflag
 hcenter = 0.0
 vcenter = 0.0
 axrng = 2.0
 mandel = 1
 julflag = 0
 init()

def init():
 # Identify the globals

 global hcenter
 global vcenter
 global axrng
 global hstep
 global vstep
 global yinit
 global xinit
 global yfinal
 global xfinal
 global mandel
 global julhcenter
 global julvcenter

 # Set the screen plotting coordinates and the step

 glClearColor(0.0, 0.0, 0.0, 0.0)

 234

 # Dividing by (width+1) and (height+1) delays
 # the onset of screen glitches or artifacts when
 # zooming by making the hstep and vstep slightly smaller

 hstep = 2*axrng/(width+1)
 vstep = 2*axrng/(height+1)

 # if mandel == 1 then we are plotting the M-Set
 if mandel == 1:
 yinit = vcenter + axrng
 xinit = hcenter - axrng
 yfinal = vcenter - axrng
 xfinal = hcenter + axrng
 else:
 # if mandel <> 1 then we plot Julia
 # the Julia Set uses different
 # global variables so we don’t forget
 # the M-Set parameters

 yinit = julvcenter + axrng
 xinit = julhcenter - axrng
 yfinal = julvcenter - axrng
 xfinal = julhcenter + axrng

 # Fill the entire graphics window!

 glViewport(0, 0, width, height)

 # Set the projection matrix... our "view"

 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 # Set the window plot coordinates

 gluOrtho2D(xinit,xfinal,yfinal,yinit)

 # Set the matrix for the object we are drawing

 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()
 glutPostRedisplay()

def keyboard(key, x, y):
 global mandel
 global tmprng
 global axrng
 global hcenter
 global vcenter
 global julflag

 if mandel == 1:

 235

 # We are working with the M-Set
 # Store the M-Set axrng zoom factor
 # So that we can restore it later if needed

 tmprng = axrng

 # Allows us to quit by pressing 'Esc' or 'q'

 if key == chr(27):
 sys.exit()

 if key == "z":
 zap()

 if key == "j":
 # Toggle the Julia Set
 # and set axrng to original zoom

 mandel = 0
 axrng = 2.0

 if key == "m":
 # Toggle M-Set and restore the last
 # M-Set axrng value so the M-Set looks
 # the same as it did when we left it

 mandel = 1
 axrng = tmprng
 julflag = 0
 init()

 if key == "q":
 sys.exit()

def drawmandel():
 glClear(GL_COLOR_BUFFER_BIT)
 y = yinit

 # toggle Julia Set or M-Set
 # mandel == 0 is the Julia Set
 # julx and july contain the Julia Set
 # seed coordinates

 if mandel == 0:
 a = complex(julx, july)

 while y > yfinal:
 y-= vstep
 x = xinit
 while x < xfinal:
 x+= hstep

 236

 n = 0

 # Choose M-Set or Julia Set
 # If Julia Set is toggled, “a” already contains
 # the complex number seed

 if mandel == 1:
 z = a = complex(x,y)
 else:
 z = complex(x,y)

 # Escape time… increase this value above 25
 # for a more detailed plot. Decrease
 # this value for more speed.

 while n < 25:
 n+=1
 z = z**2 + a
 zz = abs(z)

 # This is the escape distance. For some
 # M-Set/Julia Sets such as sin() or exp() you
 # may need to set this value higher than 2
 # 50 works well for sin() functions

 if zz > 2:
 # Weird colors outside the M-Set
 #glColor3f(3*sin(3*z.real),cos(3*z.real),4*cos(zz))
 #glBegin(GL_POINTS)
 #glVertex2f(x,y)
 #glEnd()
 #glFlush()
 n = 5001

 # The same goes for this zz < 2 statement as above

 if zz < 2:
 # Coloration inside the M-Set

 glColor3f(3*sin(3*zz),cos(3*z.real),2*sin(zz))
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()

def mouse(button, state, x, y):
 global hcenter
 global vcenter
 global axrng
 global julhcenter
 global julvcenter
 global julflag

 237

 global julx
 global july

 # Detect the left/right mouse buttons and the click
 # Followed by resetting the origin
 # Left mouse button zooms in, right button zooms out

 if button == GLUT_LEFT_BUTTON and state == GLUT_DOWN:
 if mandel == 1:
 hcenter = xinit + (xfinal - xinit)*x/width
 vcenter = yinit + (yfinal - yinit)*y/height
 axrng = axrng/2
 init()
 else:
 # We use different center point variables here
 # to keep the Julia Set and M-Set calculations
 # separate

 julhcenter = xinit + (xfinal - xinit)*x/width
 julvcenter = yinit + (yfinal - yinit)*y/height

 # We use a flag variable here so that the first
 # Julia Set plot is normal size regardless of the
 # Zoom factor on the M-Set. We don’t want to
 # cause a zoom on the first Julia Set

 if julflag == 0:
 # Print the value of the Julia Set seed

 print "Julia", julhcenter, julvcenter

 # Store the pixel coordinates in julx and july
 # for the Julia Set seed

 julx = julhcenter
 july = julvcenter

 # Set the following variables to zero
 # so the first Julia Set is centered in
 # the graphics display window

 julhcenter = 0.0
 julvcenter = 0.0

 # Show the Julia Set!
 init()

 else:
 # NOW we can zoom on the Julia Set

 julhcenter = xinit + (xfinal - xinit)*x/width
 julvcenter = yinit + (yfinal - yinit)*y/height

 238

 axrng = axrng/2
 init()

 # Set the flag so subsequent mouse clicks zoom
 # into the Julia Set

 julflag = 1

 if button == GLUT_RIGHT_BUTTON and state == GLUT_DOWN:
 # This section is similar to the previous
 # Section except that here we zoom out!

 if mandel == 1:
 hcenter = xinit + (xfinal - xinit)*x/width
 vcenter = yinit + (yfinal - yinit)*y/height
 axrng = 2*axrng
 init()

 else:
 julhcenter = xinit + (xfinal - xinit)*x/width
 julvcenter = yinit + (yfinal - yinit)*y/height

 # Again, we don't want to initially zoom into
 # the Julia Set... we want a "normal" Julia First
 if julflag == 0:
 print "Julia", julhcenter, julvcenter
 julx = julhcenter
 july = julvcenter
 julhcenter = 0.0
 julvcenter = 0.0
 init()

 else:
 julhcenter = xinit + (xfinal - xinit)*x/width
 julvcenter = yinit + (yfinal - yinit)*y/height
 axrng = 2*axrng
 init()

 julflag = 1

def main():
 glutInit(sys.argv)
 glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE)
 glutInitWindowPosition(50, 50)
 glutInitWindowSize(width, height)
 glutCreateWindow("Mandelbrot Set")
 glutDisplayFunc(drawmandel)
 glutMouseFunc(mouse)
 glutKeyboardFunc(keyboard)
 zap()
 glutMainLoop()

 239

main()

End Program

 This program functions in much the same fashion as the previous M-Set program
with the exception of the added Julia Set option. To display the Julia Set of any pixel
point in the M-Set graphics window, press the "j" key on the keyboard and then click on
the pixel using either mouse button. Once the Julia Set has displayed, you can then
zoom in or out just as with the M-Set program. To return the M-Set you were viewing
prior to the Julia Set, press the "m" key. Remember that EACH pixel59 in the M-Set
graphics window represents a different Julia Set. You could spend a LOT of time with
this program exploring the various Julia Sets associated with different locations in the M-
Set!

 An example of this program’s execution is shown in figures M-Set and J-Set
below and on the next page. An escape time value of 200 was used instead of 25 in
order to show more detail in both sets. The M-Set figure is shown after 3 zoom clicks in
the seahorse valley.60 Be patient when increasing the escape time value. The beauty of
the final fractal image is usually worth the wait! In the M-Set figure, a cross-hair is
positioned in an area of the M-Set known as the upper seahorse valley. The
corresponding Julia Set for this location is displayed in the J-Set figure. You may not
be able to exactly hit the point shown in the M-Set figure, but you should be able to get
fairly close. Even so, your Julia Set may be a bit different than the one displayed here.

Figure M-Set after 3 zooms. Note the cross!

 The Julia Set on the next page corresponds to the complex seed point
(-0.753333333333, 0.0316666666667i). You can now zoom in on the Julia Set by
clicking on any region or point of interest. To return to the M-Set, simply press the "m"
key.

59 Actually EACH POINT in the M-Set corresponds to a different Julia Set. Since points have no
dimension, there are an infinite number of Julia Sets possible from the M-Set!
60 Believe it or not, each area of the Mandelbrot Set has been named after the shapes of the
"whorls and swirls" inside the set in that region.

 240

 The beauty and uniqueness of the M-Set (and the subsequent Julia Sets!) are
striking to behold. There have been (and continue to be) an amazing number of papers,
articles, and texts based on explorations and research about the M-Set. Not only can
you find interesting shapes in the M-Set, but we can make associations with prime
numbers and PI. We are now going to work with some exercises based on the
programs we’ve written in this section. Make certain that you save any modifications to
the programs (particularly the last pymandeljulia.py program!) under a new filename
to preserve the original program listings. Oh, by the way… do you see the Cardiod in
the M-Set? Hmmm….

Figure J-Set from the cross region in the M-Set above.

Exercises

1) The coloration of the M-Set is one of the aspects that make the exploration of the M-

Set so striking. Experiment with the glColor statements and see what you can
accomplish.

2) Details of the M-Set can be amazing to view. In order to provide finer details, we

need to increase the value of the escape time. Find this code section in the listing (it
is commented) and increase the value. See if you can find an optimum value for
both speed of execution and detail.

3) Zoom, zoom, zoom! Choose various regions of the M-Set and simply zoom. How

far can you zoom before screen glitches appear? Can you fix those glitches? How
might you include something in the code so that you would know the level of
magnification? Where would you print this magnification level? One of the
interesting things about the M-Set is that after a few zooms, it is quite possible that
you are looking at something never before seen by human eyes. That makes you an

 241

explorer! Where can you change the zoom factor (both in and out) so that you can
increase the zoom increment more quickly? Figure Exercise 3 illustrates a 9
"click" zoom into the seahorse valley region. You may need to change coloration or
increase the escape time to get an optimally detailed plot. The resulting plot is
usually worth the increased wait time!

4) Can you find some mini M-Sets around the main M-Set? Where are these located?

Are they identical to the main M-Set? How are they alike and different? Figure
Exercise 4 shows one such “mini” M-Set. Can you find where this one is located?

5) Explore the M-Set and Julia Set connections. Is there a difference in appearance

between Julia Sets within the M-Set, on the border of the M-Set, and external to the
M-Set? Can you use the appearance of the M-Set in a particular region to predict
the appearance of the Julia Set?

6) Explore different equations for the M-Set such as:

 a) z = z**3 + a
 b) z = exp(z) + a (escape distance zz < 50)
 c) z = sin(z) + a (escape distance zz < 50)
 d) z = cos(z) + a (escape distance zz < 50)
 e) z = z**4 + a

 You may need to increase the escape distance value (commented in the code) to

achieve a decent plot. You might have to change axrng to a different (probably
larger) value to entirely encompass the plot. Make up your own equations and see
what happens! The equations above are shown in figures Exercise 6a through
Exercise 6e. Zoom in and out to achieve interesting results. With the exp() and
trig functions, plotting time is increased, so have some patience. You can decrease
the escape time value (commented in the code) to increase the speed of the plot at
the sacrifice of detail. Sometimes, though, coloration is more important than detail
so experiment there as well. ** Try to plot some Julia Sets in and around these M-
Sets! Amazing!

7) Can you figure out how to add a timing feature to the M-Set program to calculate

how long it takes to plot the M-Set? If not, look at the next exercise for a possible
solution.

8) Unfortunately there is no inverse iteration method for the M-Set. However, we can

use a method that scans for the boundary of the M-Set and only plots those points
that are on the boundary. This method quickly draws the outline of the M-Set. The
following listing is an implementation of the boundary scanning method.

PyBoundMSet.py
Plot an M-Set
Using boundary scanning

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *

 242

from random import *
from numpy import *
from time import *
import sys

If psyco isn't installed, delete the next two lines!
import psyco
psyco.full()

axrng = 2.0
width = 400
height = 400
hstep = 2.0*axrng/width
vstep = 2.0*axrng/height

def init():
 glClearColor(0.0, 0.0, 0.0, 0.0)
 gluOrtho2D(-axrng,axrng,-axrng,axrng)

def drawboundmandel():
 global escape
 glClear(GL_COLOR_BUFFER_BIT)

 # for a timer!
 tim = time()

 # Chooses the number of random pixels to check
 # Increase this number for a more dense plot.
 for i in range(0,100000):

 # limits the M-Set ranges
 # to speed up execution
 # and choose random pixels in
 # this more limited range
 x = -2*axrng*random()+.5
 y = 1.25*axrng*random()-1.25

 # draws a triangle around the M-Set
 # So we have fewer points to choose from
 if y < .625*x + 1.25 and y > -.625*x - 1.25:

 bound = 0

 # check pixels at North, South,
 # East, and West locations to see
 # if these points escape to infinity
 # If so, add 1 to bound variable
 leng = escapetime(x+hstep,y)
 if leng < 2:
 bound += 1
 leng = escapetime(x-hstep,y)
 if leng < 2:

 243

 bound += 1
 leng = escapetime(x,y-vstep)
 if leng < 2:
 bound += 1
 leng = escapetime(x,y+vstep)
 if leng < 2:
 bound += 1

 # If any, but not ALL neighboring
 # pixels escape, then the current pixel
 # is on the border of the M-Set so plot it!
 #
 # Change second bound to bound < 5 for
 # an interesting effect!
 if bound > 0 and bound < 4:
 glColor3ub(85*bound,50*bound,90*bound)
 glBegin(GL_POINTS)
 glVertex2f(x,y)
 glEnd()
 glFlush()

 # Print the elapsed time in the console window
 print time() - tim

def escapetime(x,y):
 n = 0
 z = a = complex(x,y)

 # Low escape time for a quick plot
 while n < 25:

 # M-Set equation
 z = z**2 + a
 zz = abs(z)

 # escape distance
 if zz > 2:
 n = 5001
 n += 1
 return zz

def main():
 glutInit(sys.argv)
 glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE)
 glutInitWindowPosition(50, 50)
 glutInitWindowSize(width, height)
 glutCreateWindow("Julia Set")
 glutDisplayFunc(drawboundmandel)
 init()
 glutMainLoop()

main()

 244

End Program

 The resulting plot for this program is shown in figure Exercise 8a. Notice how
quickly we see an outline of the M-Set! As we did with the normal escape time M-
Set program, try experimenting with escape time and try different M-Set equations to
see what happens.61 Also, increase the number of pixels to plot (commented in the
program) and change the second bound conditional variable to a value greater than
4 for an interesting effect (also commented). Figure Exercise 8b illustrates an
escape time of 250. The M-Set plot is more detailed, but takes longer to display.

 Exercise 3 Exercise 4

 Exercise 6b Exercise 6c

61 You will have to alter the x and y ranges at the beginning of the plotting loop to see the
complete plots of other equations. These ranges are for the M-Set only. You can experiment to
see what works in each new equation.

 245

 Exercise 6d Exercise 6e

 Exercise 8a Exercise 8b

Chapter 8 2D Animation

 How do we make something move? Perhaps before we ask that question, we
should ask "How do we know when an object is moving?" In order to determine whether
or not motion is occurring we must first establish a reference point that we define to be
stationary. Then, any difference in the relative positions of the object in question and the
reference point would signify object movement or motion. The earth serves as an
excellent reference point for everyday situations. We assume that the earth is
stationary, so any change in the position of an object on the earth is easily interpreted as
motion by that object. Sometimes if we move the "stationary" reference point and keep
the object in place, we can trick our brain into believing that an object is in motion. For
example, in cartoon animation we can hold an object such as an airplane stationary with
respect to the drawing frame, but at the same time move the background scenery from
right to left. This gives the appearance of an airplane flying from left to right! Many older
computer games involved this form of background movement to simulate the motion of a
spaceship or aircraft. Another form of cartoon style animation involves drawing an
object in a particular location, then in the next frame, erasing and redrawing the object in
a slightly different location. If we do this drawing, erasing, and redrawing sequence
enough times at a relatively high speed, we can create the illusion or appearance of
motion. We will use this method to approach animation in Python.

Section 8.1 Follow the Bouncing Ball

 For our first example of animation we are going to have a sphere or ball bounce
around the confines of a graphics window. This task is not as simple as it sounds. First,
we have to draw a ball... that's not too difficult. Then we have to erase the ball and draw
it in a different location. Again, not an insurmountable challenge. Finally, we have to
figure out how to have the ball realize that it has hit the side of the graphics window so
that it can bounce off the "wall" and reverse its movement. Collision detection can be
somewhat tricky! Not only must we detect when the ball has collided with the wall, we
must also make certain that its rebound is realistic. In other words, we must make every
attempt to insure that the ball follows the laws of physics. Without further ado, here is a
first attempt at animation.

PyBounce.py

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
import sys

uncomment these lines later
to see if there is any difference
in the speed of the ball
import psyco
psyco.full()

globals for animation, ball position
and direction of motion
global anim, x, y ,dx, dy

 247

initial position of the ball
x = -0.67
y = 0.34

Direction "sign" of the ball's motion
dx = dy = 1

Window dimensions
width = height = 500
axrng = 1.0

No animation to start
anim = 0

def init():
 glClearColor(0.0, 0.0, 0.0, 1.0)
 glColor3ub(255, 0, 0)

 # Dimensions of the screen
 # Make axrng larger and see what happens!
 gluOrtho2D(-axrng, axrng, -axrng, axrng)

def idle():
 # We animate only if anim == 1, otherwise
 # the ball doesn't move
 if anim == 1:
 glutPostRedisplay()

def bounce():
 global x, y, dx, dy
 glClear(GL_COLOR_BUFFER_BIT)

 # changes x and y
 x += 0.001*dx
 y += 0.001*dy

 # Keep the motion mathematics
 # Safe from harm and then
 # Move the ball location based on x and y
 glPushMatrix()
 glTranslate(x,y,0)
 glutSolidSphere(0.1, 50, 50)
 glPopMatrix()

 # Collision detection!
 # What happens here and why does this work?
 if x >= axrng or x <= -axrng:
 dx = -1*dx
 if y >= axrng or y <= -axrng:
 dy = -1*dy

 248

 glFlush()

def keyboard(key, x, y):
 # Allows us to quit by pressing 'Esc' or 'q'
 # We can animate by "a" and stop by "s"
 global anim
 if key == chr(27):
 sys.exit()
 if key == "a":
 # Notice we are making anim = 1
 # What does this mean? Look at the idle function
 anim = 1
 if key == "s":
 # STOP the ball!
 anim = 0
 if key == "q":
 sys.exit()

def main():
 glutInit(sys.argv)
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE)
 glutInitWindowPosition(100,100)
 glutInitWindowSize(width,height)
 glutCreateWindow("PyBounce")
 glutDisplayFunc(bounce)
 glutKeyboardFunc(keyboard)
 glutIdleFunc(idle)

 init()
 glutMainLoop()

main()

End of program

 When you run this program, you should first see a window that looks like Figure
8.1 on the next page. Press "a" and see what happens. You should see the ball
bouncing around the screen, but it doesn't look very smooth. You may even notice that
the ball is sinking into the sides of the screen prior to rebounding. We will fix these
problems in a moment, but for now let's look at the code a bit more closely.

PyBounce.py

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
import sys

uncomment these lines later
to see if there is any difference
in the speed of the ball

 249

import psyco
psyco.full()

 There is nothing mysterious about the beginning lines of the program. We've
seen this code before. We don't need the numpy module at this point, so we do not
import it. Once the program is running properly, you may uncomment the psyco code to
see if your program runs a bit more smoothly. However, you may want to wait until we
fix the animation issues first.

 Figure 8.1

 The next section declares some global variables and sets some initial values for
those variables:

globals for animation, ball position
and direction of motion
global anim, x, y ,dx, dy

initial position of the ball
x = -0.67
y = 0.34

Direction "sign" of the ball's motion
dx = dy = 1

Window dimensions
width = height = 500
axrng = 1.0

No animation to start
anim = 0

 250

 The global declaration statement looks a bit different, doesn't it? We can
declare all global variables using one statement if we wish. This single line declaration
has not been used in previous programs because my goal was clarity rather than
efficiency. We have advanced to the point now where we can begin to take a few
shortcuts as long as we retain the meaning of the code construction.

 The x and y variables provide the initial position of the center of the ball. The
direction variables, dx and dy, are both initialized to +1. We will use these two variables
to establish the direction that the ball is traveling. When the ball collides with a wall,
changing the sign of dx or dy will allow us to change the direction of the ball's motion as
we shall soon see. There is nothing new about the width and height variables other
than the format of how we are assigning their initial values. The global variable anim
will be used to toggle the animation of the ball on or off by using the "a" key.

 The def init(): function is nearly identical to earlier programs, but following
the init function, we see a new function called def idle():. The def idle():
function is called when GLUT is "idling" or not responding to mouse or keyboard input.
Similar to the GLUT mouse and keyboard functions, we must declare the def
idle(): function in the def main(): code block by using glutIdleFunc(idle).
Of course, we could name this function anything we wish as long as we declared the
identical name in the glutIdleFunc() statement. However, using the name "idle"
seems to make sense for our first program. It is the idle function that allows animation
to occur. As long as GLUT is NOT responding to keystrokes or mouse input, it "idles" for
us by executing the following code:

def idle():
 # We animate only if anim == 1, otherwise
 # the ball doesn't move
 if anim == 1:
 glutPostRedisplay()

 In this code block, IF the global variable anim == 1, then Python simply keeps
calling the display function by issuing a glutPostRedisplay() command. This
continuous calling of the display function may not seem important, but the result in our
current program is animation! If anim <> 1, then animation stops. Of course, the
actual animation procedures occurs in the display function def bounce():

display function

def bounce():
 global x, y, dx, dy
 glClear(GL_COLOR_BUFFER_BIT)

 # changes x and y coordinates
 x += 0.001*dx
 y += 0.001*dy

 # Keep the origin in safe keeping
 # for glTranslate!

 251

 glPushMatrix()

 # Move the ball location based on x and y
 glTranslate(x,y,0)
 glutSolidSphere(0.1, 50, 50)
 glPopMatrix()

 # Collision detection!
 # What happens here and why does this work?
 if x >= axrng or x <= -axrng:
 dx = -1*dx
 if y >= axrng or y <= -axrng:
 dy = -1*dy

 glFlush()

 It is important to understand the purpose of the glClear statement. Comment
this statement and run the program (make sure you press "a" to start the animation).
Uncomment glClear after you have seen the results. What purpose does the
glClear function serve? That's correct! glClear allows for the erasing and
subsequent redrawing needed for proper animation. The following statements:

 x += 0.001*dx
 y += 0.001*dy

continuously increment the x and y coordinates by 0.001.1 The direction or sign of the
0.001 value in each equation is determined by the value of dx and dy respectively.2
Initially, dx and dy are both +1 (how do you know?) and the x and y coordinates
increase by +0.001 each iteration. This change in x and y coordinates along with the
erasing and redrawing of the ball results in the appearance of motion. If we change dx
and/or dy to a value of -1, we will change the horizontal and vertical directions of the x
and y motions by subtracting 0.001 from x and/or y. So, the values of dx and dy
together determine which direction the ball will move in the graphics display window.

The next section is definitely mysterious (preceding comments have been
removed):

 glPushMatrix()
 glTranslate(x,y,0)
 glutSolidSphere(0.1, 50, 50)
 glPopMatrix()

1 Remember what += means! It is equivalent to x = x + 0.001*dx.
2 When we write a program to simulate the dynamics of star movements, we will call such
direction routines unit vectors. A vector has both magnitude and direction. In this case, we do
not want to change the magnitude of the motion using dx and dy, only the direction of motion.
Hence, we multiply 0.001 by -1 or +1, which changes the direction sign, but not the absolute
value of the velocity of the ball..

 252

What is glPushMatrix() and why do I have to use it? First, you MUST
remember that for every glPushMatrix(), you must have a matching
glPopMatrix(). Every code statement between these two matrix commands is
"protected" from inadvertent changes in the screen origin or reference point. What do I
mean by inadvertent changes in the current graphics reference point? The
glTranslate(x,y,0)3 statement allows us to move to any x,y coordinate location in
the graphics window (and beyond!).4 However, issuing a simple unprotected
glTranslate() command also changes the "origin" or the reference point of the x,y
coordinates within the glTranslate statement. Every future point we select will be
relative to the last point we specified in glTranslate. We don't want that behavior in
our program! Here is an example: Say I issue an initial glTranslate(0.5, 0.5, 0)
command and then draw a circle. As expected, the circle will be centered at (0.5, 0.5)
on the screen. If I issue the same glTranslate command again, you might expect
that the circle will not move... after all, we are using the same coordinates of (0.5, 0.5)
and we should draw a new circle in the same location. In actuality, though, a new circle
will be drawn (0.5, 0.5) units away from the previous circle! If we continue to issue the
same glTranslate command, we will create a line of individual circles on the y = x
diagonal. Even though we issue the SAME glTranslate command, each new circle
will be plotted relative to the previous circle. While the effect may be interesting, this line
of identical circles is probably not what we want!

 So, effectively glTranslate will create a NEW origin or reference point every
time we issue the command. This is NOT what we want. We want the origin to stay in
the CENTER of our screen and have the coordinates (0, 0) like we and Descartes
expect.5 We want to be able to use glTranslate and plot individual circles wherever
we like using the traditional x and y coordinate system. We do NOT want our circles to
march merrily off into the void! This is the reason we use glPushMatrix() and
glPopMatrix(). Using these commands as bookends to our plotting statements, we
"freeze" the origin in the correct location and we are able to use glTranslate exactly
as expected. If you don't quite understand this concept, simply comment out both
glPushMatrix() and glPopMatrix() statements and run the program again. What
happens when you press "a". See what I mean? The ball takes off on a diagonal and
never returns. You should uncomment the "matrix" statements before someone gets
hurt!

 In the process of explaining the glPushMatrix() and glPopMatrix()
statements, I couldn't avoid discussing glTranslate, so hopefully you understand the
purpose of this command. A translation is a lateral movement in a plane or in space,
hence the name glTranslate. We used glVertex2f (and later we will use
glVertex3f) to plot points ONLY. If we want to position objects other than points
(such as spheres), we must use glTranslate to move the object to the desired
location. Finally, the line after glTranslate plots a sphere using the appropriate
GLUT command. The format of this command is as follows:

3 So, what does the "0" in glTranslate(x,y,0) do? OpenGL is a 3D graphics environment
by nature, so the 0 holds a place for the z-axis, which we'll be using later on.
4 In geometry, a translation is a movement from one (x, y) location to another (x', y') location in a
linear direction. I use the phrase 'lateral movement' in the text.
5 Ah, yes... look up René Descartes and see what he did for algebra and geometry!

 253

 glutSolidSphere(radius, slices, stacks)

 The meaning of radius is obvious and its value should be chosen to fit the axis
range of your graphics window. If you have set axrng = 1.0, then you should choose
a radius much smaller than this value or the sphere (ball) will be much too large. The
slices and stacks parameters are analogous to longitude and latitude lines. The
higher these values, the more smooth the sphere, but it will take longer to draw. If your
animation is much too slow or "jerky", then choose smaller values for slices and
stacks. I used 50 for both values, but you can get a pleasing sphere/ball using 10 or
20 for slices and stacks. One question you might pose is "Why are you plotting a
sphere when we are using 2D graphics?" Good question. The short answer is that the
cross-section of a sphere is a circle, which looks like a "ball" on the graphics screen and
serves our purpose nicely. GLUT spheres are very easy to plot!

 The next section of code is for simple collision detection.6 Without this code, the
ball will move off the screen (similar to what happened when we commented the
glPushMatrix() and glPopMatrix() commands) never to return. Here are the
magic collision detection statements:

 if x >= axrng or x <= -axrng:
 dx = -1*dx
 if y >= axrng or y <= -axrng:
 dy = -1*dy

 That is all it takes! If the x location of our ball is at or outside the +/- limits of
axrng, then we multiply dx by -1, effectively changing the sign of dx and hence the
direction sign of 0.001! The same reasoning may be used for the y location of the ball.
Essentially, if the ball reaches any screen boundary as set by axrng, then the ball will
reverse its direction. This is a rudimentary, yet effective form of collision detection. Look
once again at:

 x += 0.001*dx
 y += 0.001*dy

to see how the signs of dx and dy affect the values of 0.001, x, and y, and thus the
motion of the ball. Finally, we use glFlush() (perhaps for the last time...) to draw the
new location of the ball.

 The keyboard function is a bit more complex than in previous programs
because we are adding two new key options:

def keyboard(key, x, y):
 # Allows us to quit by pressing 'Esc' or 'q'
 # We can animate by "a" and stop by "s"
 global anim
 if key == chr(27):

6 Collision detection can become not so simple for complex objects. Collision response can be
even more complicated if we want the physics to be accurate!

 254

 sys.exit()
 if key == "a":
 # Notice we are making anim = 1
 # What does this mean? Look at the idle function
 anim = 1
 if key == "s":
 # STOP the ball!
 anim = 0
 if key == "q":
 sys.exit()

 In addition to the usual "Esc" and "q" keys, we are allowing the user to start
animation by pressing the "a" key (how does this start animation?) and to stop animation
by pressing the "s" key (again, how does this stop animation?). Note the global anim
statement. This statement allows us to change the value of anim within the keyboard
function so the entire program can use the new value of anim.

 The only modification to the def main(): function is the addition of the
glutIdleFunc(idle) statement, which is needed in order to define the GLUT idle
function.

 The animation provided by this particular program has an annoying flicker and is
not pleasing to the eye. Let's fix that visual problem. First, we must deal with the
flickering effect. Ideally, we would want to see much smoother animation. Fortunately,
the "fix" is simple. Make the following changes to your program listing:
In def main(): replace:

 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE)

with:

 glutInitDisplayMode(GLUT_RGB|GLUT_DOUBLE)

and in def bounce(): replace our good friend:

 glFlush()

with:

 glutSwapBuffers()

 Remember to keep the same level of indentation when you make the
modifications above and then run the program again. See how much smoother the
animation is! This is called "double-buffering" and the concept is rather simple. Imagine
two graphics windows (called "buffers"), one in front of the other. While we draw on the
back window, we display the front window. We then "swap buffers" and exchange the
windows, again drawing on the "hidden" window/buffer while displaying the new recently
drawn buffer. We continue to repeat this process and the result is smooth animation.
This technique is much more efficient than the original drawing-erasing-drawing strategy,
which caused flickering.

 255

 The second issue is a bit more difficult to treat. The bouncing ball is sinking into
the walls of the screen. We don't want that behavior, so what do we do? Before we can
fix the problem, we must understand why the ball behaves as it does. Remember that
the position of the ball as set by glTranslate is based on the center of the ball. So,
while we want the ball to change direction based on contact with its outer border and the
wall, it actually changes its direction when the center point hits a wall. The fix is not
difficult, though, and is illustrated by the following statements:

 if x >= axrng - 0.1 or x <= -axrng + 0.1:
 dx = -1*dx
 if y >= axrng - 0.1 or y <= -axrng + 0.1:
 dy = -1*dy

What is the significance of the -0.1 and +0.1 modifications? These represent the
radius of the ball! By using these values, we take into consideration the radial size of the
ball and can detect a window border collision with the outside boundary of the ball. If
you haven't done so, run the program and watch what happens. This is much better
animation than the original pybounce.py program and we've not had to expend much
additional effort. You should understand that it would be more efficient to use a variable
to represent the radius of the ball/sphere everywhere in the program that the radius is
needed. How might you do that? See Exercise 2!

 In the following exercises, be prepared to invent, experiment, and discover
additional features and behaviors dealing with simple animation.

Exercises

1) Try animating the different GLUT shapes listed below! Does the collision mechanism

still work properly for each?

 glutSolidCone(base, height, slices, stacks)
 glutSolidCube(size)
 glutSoliddodecahedron()
 glutSolidIcosahedron()
 glutSolidOctahedron()
 glutSolidTetrahedron()
 glutSolidTorus(inner_radius, outer_radius, sides, rings)
 glutSolidTeapot(radius)

Can you fix the collision mechanism if it is not working? How? Some of the GLUT
shapes take no parameters (which ones?) so how can you set their size? There is
an OpenGL function, glScalef(x, y, z), which will allow you to change the size
of the object you are drawing. If you place glScalef(2.0, 2.0, 2.0)
immediately above the GLUT shape command, then you will be multiplying the
size/scale of the shape by 2.0 on all three axes, (x, y, z). The effect would be a
doubling of the linear dimensions of the shape. Likewise, placing glScalef(0.5,
0.5, 0.5) prior to issuing a GLUT shape command will scale each of the axes by
0.5, effectively shrinking the image. What happens if you use unequal values for the

 256

axes? Try it! Also, you can substitute the word "Wire" for "Solid" in each of the
GLUT shape commands with the expected result.

2) We have "hard-coded" the radius of the sphere/ball in the example program by using
0.1 in glutSolidSphere and in the collision detection code. Replace this 0.1
value with an appropriate variable so that when you wish to change the radius of the
sphere, you can do so in only one place and the change will be reflected throughout
the program. Can you say "global"?

3) Try different initial values for the position and velocities of the bouncing ball. Also, try

increasing axrng to a much larger number. What happens to the apparent size of
the ball? Why does this happen? Do you notice any other effects as the size of
axrng increases? Does the ball ever become a ring? Why do you think this
happens?

4) If you change the dimension of the graphics window while the program is running by

dragging the lower right corner or by maximizing the window, what happens to the
bouncing ball? What are we missing in this program that might fix this problem? If
you thought "a reshape function", then give yourself a pat on the back. However,
simply using the reshape function from previous programs will not suffice. We must
take into consideration the graphics axis ranges for collision detection. Here is an
example of the steps needed to add a reshape function to the pybounce.py
program:

 First add:

 global xborder, yborder

to the global variable section. We will use these two variables, xborder and
yborder, to establish virtual "walls" within the graphics window. Then initialize
these variables to the value for axrng as follows:

 xborder = yborder = axrng

Why must you place this line AFTER you set the value for axrng? Next, add the
following def reshape(w, h): function:

def reshape(w, h):
 global xborder, yborder
 # To insure we don't have a zero height
 if h==0:
 h = 1

 # Fill the entire graphics window!
 glViewport(0, 0, w, h)

 # Set the projection matrix... our "view"
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 257

 # Set the aspect ratio of the plot so that it
 # Always looks "OK" and never distorted.
 if w <= h:
 gluOrtho2D(-axrng, axrng, -axrng*h/w, axrng*h/w)
 yborder = axrng*h/w
 xborder = axrng
 else:
 gluOrtho2D(-axrng*w/h, axrng*w/h, -axrng, axrng)
 xborder = axrng*w/h
 yborder = axrng

 # Set the matrix for the object we are drawing
 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

End Function

Note the:

 yborder = axrng*h/w
 xborder = axrng

and

 xborder = axrng*w/h
 yborder = axrng

statements in the if w <=h:... else: conditional block of code. These
statements will establish the new "reshaped" boundaries for the walls of the graphics
window based on axrng and the aspect ratio (h/w or w/h) of the reshaped window.
What must you do in def main(): to let Python know that this reshape function
exists? That's correct, you must add a glutReshapeFunc(reshape) statement.

 Finally, we must make some minor changes to the collision conditional
statements in the def bounce(): display function:

 if x >= xborder-radius or x <= -xborder+radius:
 dx = -1*dx
 if y >= yborder-radius or y <= -yborder+radius:
 dy = -1*dy

 We are using the new xborder and yborder global variables to detect wall
collisions. You DID implement a radius variable for the ball in exercise 2, didn't
you?

 Perhaps a good question to ask would be "Why would I want to change the
window dimensions while the program is running?" Good question... however, try
resizing the window and watch how the path of the bouncing ball changes.

 258

 One caveat: If you resize the window more than once, it is possible to "trap" the
ball outside the graphics windows boundaries and the ball will never reappear. Try it!
See if you can "break" the simulation by making the ball disappear. How might we
fix this problem? Once solution would be to detect the location of the ball using the
x,y coordinates and place the ball "back into play". Type the following code
immediately after the if w<=h: block (and indented at the same level as the if
w<=h: statement!) within the def reshape function:

 if x <= -xborder:
 x = -xborder + (2*radius)
 if x >= xborder:
 x = xborder - (2*radius)
 if y <= -yborder:
 y = -yborder + (2*radius)
 if y >= yborder:
 y = yborder - (2*radius)

You will also have to add x and y to the global variable statement in the first line of
the reshape function. This if code block is fairly crude, but it seems to work.
Basically the code tests the position of the ball's (x, y) coordinates against the +/-
xborder and +/- yborder graphics window "walls". If the ball is outside those
boundaries, then it resets the position of the ball within the graphics window by an
arbitrary value of 2*radius or a single ball diameter. Experiment with this code by
resizing the graphics window during animation and see what happens.

5) How would we add some interactive capability to this bouncing ball simulation? In
other words, how can we control the motion of the ball by using key presses? We
already know how to implement a key press to end a program and to start and stop
animation in this simulation. Let's learn something new and add the arrow or cursor
keys to our keyboard interaction choices. In order to accomplish this task, we can
not simply use the current keyboard function. The arrow or cursor keys are a bit
different and we must access them through a "special" key function. Try the
following changes in your pybounce.py program:

Add the following new function to your code listing, remembering to have NO
indentation for the def statement:

def specialkey(key , x, y):
 global hvel, vvel
 if key == GLUT_KEY_LEFT:
 hvel -= 0.001
 if key == GLUT_KEY_RIGHT:
 hvel += 0.001
 if key == GLUT_KEY_UP:
 vvel += 0.001
 if key == GLUT_KEY_DOWN:
 vvel -= 0.001

End specialkey function

 259

 You probably can gather from the structure of this code that we are going to use
the LEFT, RIGHT, UP, and DOWN keys depending on the value stored in the variable
key. We will need to register this function with Python and OpenGL/GLUT by
adding the following line to def main(): immediately above the idle()
statement.

 glutSpecialFunc(specialkey)

We need to change the initial global variable statements as follows:

 global width, height, axrng, anim, x, y
 global xborder, yborder, radius, hvel, vvel

Note the deletion of the dx and dy variables and the addition of our old friends (from
the physics pycannon.py program) hvel and vvel. Now add:

 hvel = vvel = 0.000

to the variable initialization section of your program following the global variable
statements. Three changes need to be made in the def bounce(): display
function. First, change the global variable statement to:

 global x, y, hvel, vvel

and then modify the position/motion equations as follows:

 x = x + hvel
 y = y + vvel

Since we are going to control the motion of the ball using the arrow keys, we no
longer need to designate a constant speed (which used to be 0.005) nor do we
need dx and dy to change directions after a wall collision. We will use hvel and
vvel for both purposes. Finally, change the collision detection statements to:

 if x >= xborder-radius or x <= -xborder+radius:
 hvel = -1*hvel
 if y >= yborder-radius or y <= -yborder+radius:
 vvel = -1*vvel

Notice the addition/substitution of the hvel and vvel variables in place of dx and
dy. At this point you should be able to run your program. Press the 'a' key to start
the animation and then see if you can move the ball using the arrow keys. Can you
add an additional key press that will set both hvel and vvel to zero, effectively
stopping the ball? You might think that pressing the 's' key will serve this purpose. It
is true that animation ceases with the 's' key, but as soon as the 'a' key is pressed,
the ball will resume the motion it had prior to stopping. Not only that, but you can
change the stored values for hvel and vvel while the ball is in a state of suspended
animation! What we need is a method of actually bringing the velocity of the ball to
zero or to the rest state. See if you can figure out how to do bring the velocity of the
ball to zero on your own.

 260

6) As a final exercise in this section, can you add friction to this simulation so that the

motion of the ball will eventually come to a halt without additional force (arrow key
presses) being added? See the pycannon.py program in Section 5.4, Exercise 12
for a hint.

 261

Section 8.2 A Little Gravity!

 In this section, let's expand the model that we created in the last program and
add some gravity to the simulation. What we want to observe is a ball acting under the
influence of a gravitational field, detecting collisions with the walls, floor, and possibly
ceiling, and unaffected by friction at this point. The following is a complete code listing of
such a simulation. You may simply load your last program from the previous section and
make changes where appropriate. Save this modified program as pygravity.py or
something similar.

PyGravity.py

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
import sys

uncomment these lines later
to see if there is any difference
in the speed of the ball
import psyco
psyco.full()

globals for animation, ball position
and direction of motion
global anim, x, y ,hvel, vvel, radius
global xborder, yborder

initial position of the ball
x = -0.67
y = 0.34
dtime = 0.0005
radius = 0.1
hvel = 0.75
vvel = 3.0

Window dimensions
width = height = 600
xborder = yborder = axrng = 1.0

No animation to start
anim = 0

def init():
 glClearColor(0.0, 0.0, 0.0, 1.0)
 glColor3ub(255, 0, 0)

 # Dimensions of the screen
 # Make axrng larger and see what happens!
 gluOrtho2D(-axrng, axrng, -axrng, axrng)

 262

def idle():
 # We animate only if anim == 1, otherwise
 # the ball doesn't move
 if anim == 1:
 glutPostRedisplay()

def plotfunc():
 global x, y, hvel, vvel
 glClear(GL_COLOR_BUFFER_BIT)

 # changes x and y
 x += hvel*dtime

 # earth's gravity -9.8 meters per second*second
 vvel = vvel - 9.8*dtime
 y += vvel*dtime

 # This if statement keeps the ball
 # from falling below the window!
 if y <= -axrng + radius:
 y = -axrng + radius

 # Keep the motion mathematics
 # Safe from harm
 glPushMatrix()

 # Move the ball location based on x and y
 glTranslate(x,y,0)
 glutSolidSphere(radius, 50, 50)
 glPopMatrix()

 # Collision detection!
 # What happens here and why does this work?
 if x >= xborder - radius or x <= -xborder + radius:
 hvel = -1*hvel
 if y >= yborder - radius or y <= -yborder + radius:
 vvel = -1*vvel

 glutSwapBuffers()

def reshape(w, h):
 global xborder, yborder, x, y
 # To insure we don't have a zero height
 if h==0:
 h = 1

 # Fill the entire graphics window!
 glViewport(0, 0, w, h)

 # Set the projection matrix... our "view"
 glMatrixMode(GL_PROJECTION)

 263

 glLoadIdentity()

 # Set the aspect ratio of the plot so that it
 # Always looks "OK" and never distorted.
 if w <= h:
 gluOrtho2D(-axrng, axrng, -axrng*h/w, axrng*h/w)
 yborder = axrng*h/w
 xborder = axrng
 else:
 gluOrtho2D(-axrng*w/h, axrng*w/h, -axrng, axrng)
 xborder = axrng*w/h
 yborder = axrng

 if x <= -xborder:
 x = -xborder + (2*radius)
 if x >= xborder:
 x = xborder - (2*radius)
 if y <= -yborder:
 y = -yborder + (2*radius)
 if y >= yborder:
 y = yborder - (2*radius)

 # Set the matrix for the object we are drawing
 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

def keyboard(key, x, y):
 # Allows us to quit by pressing 'Esc' or 'q'
 # We can animate by "a" and stop by "s"
 global anim
 if key == chr(27):
 sys.exit()
 if key == "a":
 # Notice we are making anim = 1
 # What does this mean? Look at the idle function
 anim = 1
 if key == "s":
 # STOP the animation!
 anim = 0
 if key == "q":
 sys.exit()

def main():
 glutInit(sys.argv)
 glutInitDisplayMode(GLUT_RGB|GLUT_DOUBLE)
 glutInitWindowPosition(100,100)
 glutInitWindowSize(width,height)
 glutCreateWindow("PyBounce")
 glutDisplayFunc(plotfunc)
 glutKeyboardFunc(keyboard)
 glutReshapeFunc(reshape)
 glutIdleFunc(idle)

 264

 init()
 glutMainLoop()

main()

End of Program

 When you have completed the program, run the model and observe what
happens... don't forget to press 'a' to start the animation! Does this animation seem to
simulate the motion of a ball under the influence of gravity?

Exercises

1) This is a program that should allow you to "play" with the numbers. Try different

values for the initial position of the ball. Try different values for dtime and see what
happens to the simulation. Finally, try different initial velocities (hvel and vvel) for
the ball and see how the simulation behaves.

2) Try to add a second ball to the simulation and have this second ball act
independently of the initial ball.

3) Change the acceleration due to gravity in the following statements:

 # earth's gravity -9.8 meters per second*second
 vvel = vvel - 9.8*dtime
 y += vvel*dtime

 In the place of 9.8, you might try 1.62, which represents the moon's gravity. Try
 3.71, which is the acceleration due to gravity on the planet Mars. How could you
 add a global variable to this program to change gravity in the initial section of code?
 The negative sign in front of the acceleration due to gravity represents an
 acceleration toward the surface of the planet. A positive sign would represent an
 acceleration away from the planet's surface. Try changing the sign to + and see
 what happens!

4) As an extension of Exercise 2, can you write some code that will detect a collision
 between two objects? Detecting a collision and responding properly to a collision are
 two different things! You might try looking up collision detection and collision
 response online and get an idea of the difficulties involved.

 265

Section 8.3 A Little MORE Gravity... a 2-Body Simulation

 I am pleased to be involved (to a very minor extent) in a project called MSA
(Moving Stars Around)1. This project is headed by Piet Hut, an astrophysicist and
Professor of Interdisciplinary Studies at the Institute for Advanced Studies in Princeton,
New Jersey, and Jun Makino, an astrophysicist from the University of Tokyo in Japan.
Piet is a friend of mine and I had the distinct honor and privilege of attending a workshop
at the Institute in October 2007 to discuss the status and future of MSA. One of the
projects we are working on is a simulation of a cluster of stars. In order to simulate a
star cluster, one must take into consideration several factors such as the laws of motion,
the nuclear reactions within the stars, the interactions of the stars, the gravitational and
relativistic effects caused by each star, and other factors which I won't even begin to
claim to understand. The complexity of the entire dynamics of even a small cluster of
stars is beyond the scope of this text, however I think we can at least glimpse some of
the beauty of the dynamics of a star cluster by using the simple laws of motion
developed by Newton 300+ years ago. We'll start by looking at a 2 star or 2 body
problem.

 You'll recall that in Section 7.4 it was mentioned that the 2 body problem is easily
solved using Newton's equations, but the 3 body problem (and beyond 3 bodies) is not
solvable even with our current knowledge of mathematics and physics. The best we can
do is simulate the dynamics of 3 or more bodies using a computer. Well, we have a
computer, so what is stopping us...? But before we plunge into a 3 body scenario and
beyond, let's start by simulating a simple 2 body system. We will assume that our
bodies (stars) are in the vacuum of space and the only forces acting on them are the
mutual gravitational attractions between each star. This will be an assumption we will
make in future more complex simulations as well. Our equations will be relatively
simple. First, we will make use of Newton's law of universal gravitation in equation 1:

 2
21

r
mmGF =

 (1)

 The law of universal gravitation describes the force of gravity in newtons between
any 2 objects if we know the masses of the objects, m1 and m2, and the distance, r,
between their centers of mass. Big "G" is the the universal gravitational constant first
determined experimentally by Henry Cavendish in 1797. It's value is approximately 6.67
x 10-11 Nm2/kg2. If we know the force acting on an object and we know the mass of the
object, we can calculate the acceleration of the object by using Newton's 2nd law of
motion in equation 2:

 maF = (2)

1 See the Art of Computational Science webpage: http://www.artcompsci.org/

 266

or if the mass of the object is represented by m1 equation 2 can be transformed as
follows:

 amF 1= (3)

Combining Newton's second law with the law of universal gravitation, we can
immediately calculate the acceleration of the m1 object by the following equation:

 2
2

r
mGa =

 (4)

 Since acceleration is a vector, it must have BOTH a magnitude and a direction.
The magnitude of the acceleration is calculated from the above equation, but how do we
find the direction? Direction is found by multiplying by something called a unit vector. A
unit vector has a magnitude equal to 1, so a unit vector can not change the value of a
number. However, a unit vector also has a direction which is NOT usually equal to 1, so
muliplying by a unit vector WILL change the direction of whatever it multiplies, in this
case, acceleration. Here is an example of a unit vector:

 r
r

 (5)

 Combining the unit vector with equation 4 at the top of this page produces the
following formula:

 3
2

r
rmGa =

 (6)

 Since I am already making the mathematicians and physicists in the audience
cringe by my explanations and equations, let me rewrite equation 6 as follows:

 3
2)(

r
mdirectionGa =

 (7)

 267

 Equation 7 is provided to illustrate how we will be able to determine the direction
of the acceleration vector. Think of the "direction" term as both a distance AND a sign
(+/-). The distance is equal to the value of r and will divide out of the denominator,
producing the original r2 term in equation 1. The +/- sign will cross the '=' sign and attach
itself to the value of a, the acceleration. Thus, we calculate both a magnitude and a
positive or negative direction for acceleration (a). But wait... how can acceleration
simply be positive or negative? Can't acceleration be pointed in any direction? Yes,
acceleration can be pointed in any direction, but we can break up any vector into x, y,
and z (z is used in 3D motion) axis components. When breaking a vector into x, y, and z
axis components, only positive and negative directions are needed. This is very handy!
Here is what we will be doing (eventually) with multiple body simulations. We will take
equation 7 and modify it for each axis component and let rn stand for the vector (arrow) r
in the numerator of equation 6, where n is a coordinate axis:

 3
2

r
mrGa x

x = (8)

 3
2

r
mr

Ga y
y = (9)

 3
2

r
mrGa z

z = (10)

 We have calculated acceleration components in each axis direction in equations
9, 10, and 11. Together, they will combine to describe the acceleration of our star! Now
back to our story... Once we know the acceleration of an object, we can calculate its
velocity at any time by using similar reasoning:

tav xx =

 (11)

tav yy =

 (12)

 tav zz = (13)

 268

 Now we know the velocity components in each of the three axes. Together they
will combine to form the velocity vector of our star!

 Once we know the velocity components, we can then proceed to calculate the
(x,y,z) position of the star by using the following system of hopefully familiar equations:

tvd xx = (14)

tvd yy = (15)

 tvd zz = (16)

 If you are having a difficult time visualizing the concept of vector components,
look at figure 3D Vector.

 3D Vector

 If you can visualize a star at point (x, y, z), then the line from the origin to (x, y, z)
is the vector that represents the force due to gravity. In this figure, this is the line
labelled "a". We can't simply use this direct line in our calculations, but must resolve the
gravitation vector into its x, y, and z components as illustrated above. In physics, we
would use trigonometry to do the component calculations. However, trigonometry is

 269

nothing more than the ratios of the lengths of the sides of a triangle. So, in our programs
to simulate star dynamics we will use distances between the corresponding x, y, and z
components as well as the Pythagorean distance between two stars to calculate the
components of the gravitation vectors.

 So, all those formulas you were forced to learn in math and science classes
actually are useful for something! Let's see if we can put them together and write a
program to simulate a simple 2 star system. Type in the following program and save it
as 2body.py:

2body.py
a 2 star system based on Piet Hut
and Jun Makino's MSA text with
Modifications by Stan Blank for
use in Python OpenGL/GLUT

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from numpy import *
import sys

import psyco
psyco.full()

Set the width and height of the window

global width
global height

Initial values

width = 500
height = 500

initial values for position, velocity components, and time
increment

global vx1, vy1, vz1, x1, y1, z1, r2, r3, ax1, ay1, az1, dt
global vx2, vy2, vz2, x2, y2, z2, ax2, ay2, az2, G

initial x,y,z positions for both stars

x1 = 1.0
y1 = 0.0
z1 = 0.0
x2 = -1.0
y2 = 0.0
z2 = 0.0

initial vx,vy,vz velocities for both stars

 270

vx1 = 0.0
vy1 = -0.128571428
vz1 = 0.0
vx2 = 0.0
vy2 = 0.3
vz2 = 0.0

initial masses for both stars

m1 = 0.7
m2 = 0.3
rad1 = 0.1*m1
rad2 = 0.1*m2

arbitrary "Big G" gravitational constant

G = 1.0

calculate distance and r**3 denominator for universal
gravitation

r2 = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) + (z1-z2)*(z1-z2)
r3 = r2*sqrt(r2)

calculate acceleration components along x,y,z axes
First for m1

ax1 = -G*(x1-x2)*m2/r3
ay1 = -G*(y1-y2)*m2/r3
az1 = -G*(z1-z2)*m2/r3

now for m2

ax2 = -G*(x2-x1)*m1/r3
ay2 = -G*(y2-y1)*m1/r3
az2 = -G*(z2-z1)*m1/r3

This value keeps a smooth orbit on my workstation
Smaller values slow down orbit, higher values speed up orbit

dt = 0.001

def init():
 glClearColor(0.0, 0.0, 0.0, 1.0)

def reshape(w, h):

 # To insure we don't have a zero height

 if h==0:
 h = 1

 271

 # Fill the entire graphics window!

 glViewport(0, 0, w, h)

 # Set the projection matrix... our "view"

 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 # Set how we view the world and position our eyeball

 gluPerspective(45.0, 1.0, 1.0, 1000.0)

 # Set the matrix for the object we are drawing

 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

 # Place the camera position, the direction of view
 # and which axis is UP

 gluLookAt(0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0)

def keyboard(key, x, y):
 # Allows us to quit by pressing 'Esc' or 'q'

 if key == chr(27):
 sys.exit()
 if key == "q":
 sys.exit()

def orbits():
 global vx1, vy1, vz1, x1, y1, z1, r2, r3, ax1, ay1, az1
 global vx2, vy2, vz2, x2, y2, z2, ax2, ay2, az2

 # calculate front half of velocity vector components

 vx1 += 0.5*ax1*dt
 vy1 += 0.5*ay1*dt
 vz1 += 0.5*az1*dt
 vx2 += 0.5*ax2*dt
 vy2 += 0.5*ay2*dt
 vz2 += 0.5*az2*dt

 # calculate x,y,z positions for both stars

 x1 += vx1*dt
 y1 += vy1*dt
 z1 += vz1*dt
 x2 += vx2*dt

 272

 y2 += vy2*dt
 z2 += vz2*dt

 # calculate the new r**3 denominator for each star position

 r2 = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) + (z1-z2)*(z1-z2)
 r3 = r2*sqrt(r2)

 # calculate the new acceleration components

 ax1 = -G*(x1-x2)*m2/r3
 ay1 = -G*(y1-y2)*m2/r3
 az1 = -G*(z1-z2)*m2/r3
 ax2 = -G*(x2-x1)*m1/r3
 ay2 = -G*(y2-y1)*m1/r3
 az2 = -G*(z2-z1)*m1/r3

 # calculate the back half velocity components

 vx1 += 0.5*ax1*dt
 vy1 += 0.5*ay1*dt
 vz1 += 0.5*az1*dt
 vx2 += 0.5*ax2*dt
 vy2 += 0.5*ay2*dt
 vz2 += 0.5*az2*dt

 #send calculated x,y,z star positions to the display

 glutPostRedisplay()

def plotfunc():
 glClear(GL_COLOR_BUFFER_BIT)

 # plot the first star (m1) position

 glPushMatrix()
 glTranslatef(x1,y1,z1)
 glColor3ub(245, 230, 100)
 glutSolidSphere(rad1, 10, 10)
 glPopMatrix()

 # plot the second star (m2) position

 glPushMatrix()
 glTranslatef(x2,y2,z2)
 glColor3ub(245, 150, 30)
 glutSolidSphere(rad2, 10, 10)
 glPopMatrix()

 # swap the drawing buffers

 glutSwapBuffers()

 273

def main():
 global width
 global height

 glutInit(sys.argv)
 glutInitDisplayMode(GLUT_RGB|GLUT_DOUBLE)
 glutInitWindowPosition(100,100)
 glutInitWindowSize(width,height)
 glutCreateWindow("2 Body Problem")
 glutReshapeFunc(reshape)
 glutDisplayFunc(plotfunc)
 glutKeyboardFunc(keyboard)
 glutIdleFunc(orbits)

 init()
 glutMainLoop()

main()

 If everything is typed correctly, when you run the program you should see two
spherical objects in elliptical orbits passing near each other in the center of the graphics
window. Figure 2Body illustrates this scene:

 2Body

If the simulation appears to be running too slowly, then reduce the dt variable by a
power of 10, from dt = 0.001 to dt = 0.005 and run the program again.

 Now for an explanation of the program (this should be interesting)! The first part
of the code contains nothing new or unique with the exception of the larger number of

 274

global variables needed in the computational functions. Each of these global variables is
given an initial value and these initial values contribute to the particular orbit displayed.

initial x,y,z positions for both stars

x1 = 1.0
y1 = 0.0
z1 = 0.0
x2 = -1.0
y2 = 0.0
z2 = 0.0

 We initially set the position components x1 = 1.0 and x2 = -1.0 and all other
position components at 0.0. This will begin the simulation with both stars located on the
x-axis at postive +1.0 and -1.0 units respectively. The initial velocity components are as
follows:

initial vx,vy,vz velocities for both stars

vx1 = 0.0
vy1 = -0.128571428
vz1 = 0.0
vx2 = 0.0
vy2 = 0.3
vz2 = 0.0

 The first more massive star (m1) was given a downward y-axis component of
vy1 = -0.128571428 and the second less massive star (m2) was given and upward
component y-axis component of vy2 = 0.3. All other velocity components were set at
0.0. These are not arbitray values for the velocity components, but were calculated
beforehand to produce a nice stable orbit.

 In the next section, we assign initial masses to the two stars m1 and m2
respectively. We also calculate a radius for both stars based on the individual star
masses. When we display the stars in our graphics window, the radius of the spheres
will provide some indication of their relative masses. In other words, a larger star will
have a larger mass.

initial masses for both stars

m1 = 0.7
m2 = 0.3
rad1 = 0.1*m1
rad2 = 0.1*m2

 We also will assume a gravitational constant of G = 1.0 (this is OUR simulation,
we can do what we want!). The result will be a simulation of gravitational effects that
differ only in scale from the "real" universe.

arbitrary "Big G" gravitational constant

 275

G = 1.0

 Now we make some initial calculations to get the simulation headed down the
correct path!

calculate distance and r**3 denominator for universal
gravitation

r2 = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) + (z1-z2)*(z1-z2)
r3 = r2*sqrt(r2)

calculate acceleration components along x,y,z axes
First for m1

ax1 = -G*(x1-x2)*m2/r3
ay1 = -G*(y1-y2)*m2/r3
az1 = -G*(z1-z2)*m2/r3

now for m2

ax2 = -G*(x2-x1)*m1/r3
ay2 = -G*(y2-y1)*m1/r3
az2 = -G*(z2-z1)*m1/r3

 In the code above we performed some starting or "seed" calculations based on
our initial values. The r2 and r3 variables calculate the r3 denominator of Newton's
universal gravitation equation in equations 6 through 10.2 After finding the r3 term for
the denominator, we then calculate the initial ax, ay, and az acceleration components
for each of the two bodies. The negative signs in front of "Big G" indicate that these
accelerations are attractive rather than repulsive (in the force sense, not in
appearance!). The subtraction of variables within parentheses after the "G" term, i.e.
(x1 – x2) in the first calculation, finds the distance and the direction (+/-) between the
bodies along whatever axis we choose. In this case, the (x1 – x2) term finds the
distance between the two bodies along the x axis. The sign of this subtraction or
distance calculation determines the direction of force. In effect, this distance is the rx
numerator term from equation 8. The same line of reasoning applies to the acceleration
components along the y and z axes as well.

 Now that we have the initial acceleration components, we can at least think about
plotting orbits. First, we need to decide how to divide our orbit calculations into pieces or
time slices. We'll do this as we did in the cannonball simulation (pycannon.py) and
choose a small increment of time. In this program, we'll use:

dt = 0.001

We can alter this dt time increment value to speed up (larger time increment) or slow
down (smaller time increment) the simulation. Smaller time increments result in more
accurate calculations, but at the expense of a slower simulation rate. You will need to

2 Don't forget that we are multiplying Newton's Law of Gravitation by the unit vector to give a
direction. This is why we must use the r3 term instead of an r2 term.

 276

experiment on your own system to determine the best value for dt. Remember that we
are actually working with calculus and difference equations in problems of this nature!

 The def init() function is certainly familiar by now and in this program we are
going to set a black background to match the background of space.

 In the def reshape() function, we see something new:

gluPerspective(45.0, 1.0, 1.0, 1000.0)

and later:

gluLookAt(0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0)

 Here are the beginnings of the journey into the land of 3D! Let's dissect the first
statement, gluPerspective, and look at its arguments. The first value, in this case
45.0, specifies the viewing angle of the observer. In other words, in this instance the
field of view is 45.0 degrees. You can experiment with this value by making the number
larger or smaller and see how the graphics display is affected. The second value in
gluPerspective, in this case 1.0, is the aspect ratio of the graphics presentation. A
value of 1.0 means that the ratio of the width to height in the viewing window equals 1. If
we change this value to something larger than 1.0, the display is "squeezed" from both
sides. If we use a value smaller than 1.0, the display is "squashed" from above and
below. It is possible to use the aspect ratio argument to adjust the display for a window
resize/reshape, but we will not do that here.

 The final two arguments specify the distance from our eye to the near and far
clipping planes. A clipping plane marks the boundary of the graphics window. Should
an object be drawn outside these boundaries, we will not be able to see what we have
drawn. Both values must be positive and the near plane must be closer to us than the
far plane. Again, you can experiment with these values to see how the display is
changed. For example, using 0.0 for the near clipping plane results in the stars being
sliced so that all we see is a cross-section. The reason for this behavior would be due to
the fact that our eye would be in the near clipping plane rather than in front of it. This
would be a bit like sitting IN the plane of the screen at a movie theater. It is much better
to sit several rows away from the screen!

 The gluLookAt statement appears to be more complicated, but it actually is
rather easy to understand. The first 3 arguments, in this case 0.0, 0.0, 5.0, specify
the x, y, and z coordinates of your eye. We are familiar with 2 dimensional x, y
coordinates from algebra and from this text. Adding a third dimension is as simple as
adding another axis that comes out of the screen toward you and into the screen away
from you. This axis is called the z axis and we can locate any point in space by giving
the x, y, and z coordinates of that point. With the eye coordinates of (0.0, 0.0, 5.0), our
eye is 5.0 units away from (or out of) the screen ON the z axis. The second set of 3
arguments, in this case 0.0, 0.0, 0.0, locate the point in space that your eye is
looking toward. The point (0.0, 0.0, 0.0) is the origin, so you are looking at the origin.
That's simple! The final set of 3 arguments, 0.0, 1.0, 0.0, simply tell the display
which way is up. In this case, the y coordinate equals 1.0, so the positive y axis is
considered to be up.

 277

 gluLookAt is a very powerful function! We can use it to actually move or fly
through a graphics scene or display by changing the eye location, the point we are
viewing, and the "up" direction. We will make use of this feature a bit later in the text,
but keep this functionality in mind when you create your own programming projects or
games.

 The keyboard function is simple in that it allows us to exit the running simulation
by either pressing the "Esc" key or the "q" key. Later we will use keyboard functions
coupled with the powerful gluLookAt statement to fly through a more complex star
cluster simulation.

 The real "dirty work" of this program is found in the def orbits() function.
The first calculations we must make are some velocity component calculations based on
equations 11 – 13. If you are wondering why we are only calculating something called
the "front half" of the velocity vector, the reason involves mathematics and calculation
errors. When doing numerical calculus with difference equations, errors creep into the
calculations rather quickly. We can get away with the small errors that enter into a short-
lived simulation such as we created in the pycannon.py program. However, in
simulations that are designed to run for extended periods of time, the errors can grow
unacceptably large very quickly. To avoid this problem, we split the velocity calculation
into 2 parts. The first part is calculated from the previous acceleration components and
the second part is calculated from the new accleration components. Doing the velocity
calculations in this manner provides a form of averaging and the errors are minimized.
Now back to the program...

calculate front half of velocity vector components

vx1 += 0.5*ax1*dt
vy1 += 0.5*ay1*dt
vz1 += 0.5*az1*dt
vx2 += 0.5*ax2*dt
vy2 += 0.5*ay2*dt
vz2 += 0.5*az2*dt

 Once we know the velocity components, we can then find the (x, y, z)
components of the star using equations 14 – 16. We are using the += operator both in
the velocity calculations above and in the position calculations below because we need
to base new positions and velocities on the previous values for these quantities.

calculate x,y,z positions for both stars

x1 += vx1*dt
y1 += vy1*dt
z1 += vz1*dt
x2 += vx2*dt
y2 += vy2*dt
z2 += vz2*dt

 Since the starts are moving with respect to each other, the distances between
the stars change and we must calculate a new value for the r3 denominator at each

 278

time step. One drawback to calculating r3 in this manner is that it is possible for the
centers of mass for each star to coincide. This results in a zero distance between the
stars and a zero value for r3. If this occurs, the force of gravity becomes infinite and the
stars will fly away from each other instantaneously. This would not happen in nature.
Star collisions or collisions between any two massive objects would be very complex.
We can’t possibly simulate such matter and gravitational interactions in so simple a
model. Later we will introduced a small “fudge” factor to prevent such an occurrence.

calculate the new r**3 denominator for each star position

r2 = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) + (z1-z2)*(z1-z2)
r3 = r2*sqrt(r2)

 Unlike the positions and velocities, we calculate new values for the gravitational
acceleration components "from scratch" during each time step based on the masses,
distances, and directions of the stars with respect to other.

calculate the new acceleration components

ax1 = -G*(x1-x2)*m2/r3
ay1 = -G*(y1-y2)*m2/r3
az1 = -G*(z1-z2)*m2/r3
ax2 = -G*(x2-x1)*m1/r3
ay2 = -G*(y2-y1)*m1/r3
az2 = -G*(z2-z1)*m1/r3

 After the new acceleration components have been determined, we use them to
calculate the "back half" of the velocity components. These velocity components and
acceleration components will be used again as initial values when we enter the def
orbits() function during the next time slice.

calculate the back half velocity components

vx1 += 0.5*ax1*dt
vy1 += 0.5*ay1*dt
vz1 += 0.5*az1*dt
vx2 += 0.5*ax2*dt
vy2 += 0.5*ay2*dt
vz2 += 0.5*az2*dt

 Finally, we want to update the display, so we issue a command to send the new
position coordinates to the display function.

#send calculated x,y,z star positions to the display

glutPostRedisplay()

 The display function is similar to bouncing ball program we wrote in the last
section:

def plotfunc():

 279

 glClear(GL_COLOR_BUFFER_BIT)

 # plot the first star (m1) position
 glPushMatrix()
 glTranslatef(x1,y1,z1)
 glColor3ub(245, 230, 100)
 glutSolidSphere(rad1, 10, 10)
 glPopMatrix()

 # plot the second star (m2) position
 glPushMatrix()
 glTranslatef(x2,y2,z2)
 glColor3ub(245, 150, 30)
 glutSolidSphere(rad2, 10, 10)
 glPopMatrix()

 # swap the drawing buffers
 glutSwapBuffers()

 Once again we are using the glPushMatrix() and glPopMatrix() functions
to keep the motions of the two stars independent of each other with the exception of
their mutual gravitational effects. The colors of the stars are arbitrary and the radius of
each star was calculated in the initial portion of the program and is based on the masses
of the stars. After the stars are displayed at the proper coordinates, we issue the
glutSwapBuffers() statement for smooth animation.

 The def main(): function is familiar. Note again the GLUT_DOUBLE argument
within the glutInitDisplayMode function to allow for double buffered animation. In
the next section we will move from a 2 Body simulation to a 3 Body simulation, but first
let's explore the current program by doing some Exercises. Oh, I forgot to mention that
even though this chapter is entitled "2D Animation", with the addition of a z axis, we are
really doing 3D simulations at this point. However, unless we specifically specify a z
component for position or velocity, there will not be a z component for acceleration and
we will have a 2D orbit system.

Exercises

1) The initial conditions in the simulation are such that the stars orbit each other in a
pleasing manner with the motions of both describing well-formed ellipses. Try
varying the initial positions of the stars in the x1, y1, z1 and x2, y2, z2
assignment statements at the beginning of the program.

2) The initial velocities are also open for experimentation. Change the initial velocities

assigned to the vx1, vy1, vz1 and vx2, vy2, vz2 assignment statements to
other values. You might try implementing a random number for each variable. How
would you do this?

3) Experiment with the gravitational constant G. Try changing its value to something

larger and/or smaller than 1.0 and see how the behavior of the star system changes.

 280

Make certain that you keep the same initial position and velocity parameters for each
new value of G so that changes in the orbits will be more easily noticed. If you
change BOTH the initial positions and velocities as well as the value of G, then you
will not know which of the values caused the behaviors you see on the screen.

4) Comment the glClear statement in the def plotFunc(): function as follows:

 #glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

 What do you think will happen when you run the program now? Make certain
 you rememember to remove the comment!

5) Experiment with the gluLookAt function and see if you can "Look At" the orbits

from a different viewpoint. Try to figure out how to move closer and then farther
away.

6) Look up "NBody problem" online. Also, go to Piet Hut and Jun Makino's "Art of

Computational Science" website (www.artcompsci.org) . I am personally involved
in the "Moving Stars Around" (MSA) project, so make certain to visit the MSA area of
the website!

7) There is nothing to prevent you from altering the computational part of the program

by changing the formulas or altering how the gravitational forces are calculated.
However, doing so will violate the known laws of physics and will invalidate the
simulation. There is nothing inherently wrong with this, but understand that
simulations are designed to model the interactions between objects in the universe.
If we knowingly change the known laws of physics, then we will no longer be
modeling OUR universe. As long as you understand this concept, then feel free to
change the program however you like. I strongly recomment that you keep the
original copy of the 2Body.py program intact and simply rename the alternate
universe copy.

 281

Section 8.4 The REAL 3 Body Problem

 In the previous section we were able to simulate the orbits of 2 stars interacting
with each other through their gravitational forces. It should be relatively simple to add a
3rd star to the mix and see what happens... or should it be so easy? In a 2 body
simulation, each star is affected only be its companion. In a 3 body simulation, each star
is influenced by the sum of the interactions with BOTH of its companions. As we shall
see, this is not so simple and requires more code than we might think. Remember that
the 3 body problem is not solvable by a closed form equation. The best we can do is
simulate the orbits by calculating the acceleration, velocity, and position components.
Prior to the computer, this was a very difficult and labor-intensive task. Such
calculations and resulting simulation is much simpler now that we have such enormous
computing power at our fingertips.

 The following listing is a 3 body simulation. You can, to some extent, use the
2body.py program you've already written. Make certain to immediately change the
name (Save As) of the program to 3body.py or something similar. I will make no claim
for the elegance or efficiency of this program. It works properly and getting a program to
work properly is the foremost consideration of any programmer. Once a program is
functioning correctly, then we can worry about elegance and efficiency if we so choose!
More on efficiency later. For now, here is a 3 body simulation:

3body.py
a 3 star system based on Piet Hut
and Jun Makino's MSA 2 body text
with 3 body modifications by Stan Blank
for use in Python OpenGL/GLUT

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from numpy import *
import sys

import psyco
psyco.full()

Set the width and height of the window

global width
global height

Initial values for window width and height

width = 500
height = 500

global variables for position, velocity and
acceleration components, time increment, and Gravity

 282

global vx1, vy1, vz1, x1, y1, z1, ax1, ay1, az1
global vx2, vy2, vz2, x2, y2, z2, ax2, ay2, az2
global vx3, vy3, vz3, x3, y3, z3, ax3, ay3, az3, dt, G

Initial values for position components in x,y,z space
for each of the 3 star masses. Note that the z-axis
position is zero, so there is no z-component. This is
a 2D simulation at this point.

x1 = 1.0
y1 = 1.0
z1 = 0.0
x2 = -1.0
y2 = -1.0
z2 = 0.0
x3 = 0.50
y3 = -1.0
z3 = 0.0

Initial values for velocity components in x,y,z space

vx1 = 0.0
vy1 = 0.0
vz1 = 0.0
vx2 = 0.0
vy2 = 0.0
vz2 = 0.0
vx3 = 0.0
vy3 = 0.0
vz3 = 0.0

Initial acceleration components

ax1 = 0.0
ay1 = 0.0
az1 = 0.0
ax2 = 0.0
ay2 = 0.0
az2 = 0.0
ax3 = 0.0
ay3 = 0.0
az3 = 0.0

Initial star masses

m1 = 0.7
m2 = 0.4
m3 = 0.5

Gravitational Constant

G = 1.0

 283

radius of stars used in the plotFunc function

rad1 = 0.2*m1
rad2 = 0.2*m2
rad3 = 0.2*m3

Calculate r**3 denominators for 3 Body Gravitation
More complex because the motion of EACH star depends
on where the other two stars are located!

r12 = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) + (z1-z2)*(z1-z2)
r312 = r12*sqrt(r12)
r13 = (x1-x3)*(x1-x3) + (y1-y3)*(y1-y3) + (z1-z3)*(z1-z3)
r313 = r13*sqrt(r13)
r23 = (x2-x3)*(x2-x3) + (y2-y3)*(y2-y3) + (z2-z3)*(z2-z3)
r323 = r23*sqrt(r23)

Calculate the initial accelerations
MUCH more complex than 2 Body dynamics
Because each star must use the combined forces
due to gravity of the other 2 stars.
This is why there are TWO ax1, etc statements.

ax1 += -G*(x1-x2)*m2/r312
ax1 += -G*(x1-x3)*m3/r313
ay1 += -G*(y1-y2)*m2/r312
ay1 += -G*(y1-y3)*m3/r313
az1 += -G*(z1-z2)*m2/r312
az1 += -G*(z1-z3)*m3/r313
ax2 += -G*(x2-x1)*m1/r312
ax2 += -G*(x2-x3)*m3/r323
ay2 += -G*(y2-y1)*m1/r312
ay2 += -G*(y2-y3)*m3/r323
az2 += -G*(z2-z1)*m1/r312
az2 += -G*(z2-z3)*m3/r323
ax3 += -G*(x3-x2)*m2/r323
ax3 += -G*(x3-x1)*m1/r313
ay3 += -G*(y3-y2)*m2/r323
ay3 += -G*(y3-y1)*m1/r313
az3 += -G*(z3-z2)*m2/r323
az3 += -G*(z3-z1)*m1/r313

This value keeps a smooth orbit on my workstation
Smaller values slow down the orbit, higher values speed things
up

dt = 0.001

def init():
 glClearColor(0.0, 0.0, 0.0, 1.0)
 glEnable(GL_DEPTH_TEST)

 284

def reshape(w, h):

 # To insure we don't have a zero height

 if h==0:
 h = 1

 # Fill the entire graphics window!

 glViewport(0, 0, w, h)

 # Set the projection matrix... our "view"

 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 gluPerspective(45.0, 1.0, 1.0, 1000.0)

 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

 gluLookAt(0.0, 0.0, 8.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0)

def keyboard(key, x, y):
 # Allows us to quit by pressing 'Esc' or 'q'

 if key == chr(27):
 sys.exit()
 if key == "q":
 sys.exit()

def orbits():
 global vx1, vy1, vz1, x1, y1, z1, r2, r3, ax1, ay1, az1
 global vx2, vy2, vz2, x2, y2, z2, ax2, ay2, az2
 global vx3, vy3, vz3, x3, y3, z3, ax3, ay3, az3

 # More complex due to 3 Body instead of simply 2 Body
 # interactions. This is the first half of the velocity
 # Calculations. Known as Leap Frog!

 vx1 += 0.5*ax1*dt
 vy1 += 0.5*ay1*dt
 vz1 += 0.5*az1*dt
 vx2 += 0.5*ax2*dt
 vy2 += 0.5*ay2*dt
 vz2 += 0.5*az2*dt
 vx3 += 0.5*ax3*dt
 vy3 += 0.5*ay3*dt
 vz3 += 0.5*az3*dt

 # Calculate new positions

 285

 x1 += vx1*dt
 y1 += vy1*dt
 z1 += vz1*dt
 x2 += vx2*dt
 y2 += vy2*dt
 z2 += vz2*dt
 x3 += vx3*dt
 y3 += vy3*dt
 z3 += vz3*dt

 # Reset acceleration components to zero.
 # This is important!

 ax1 = 0.0
 ay1 = 0.0
 az1 = 0.0
 ax2 = 0.0
 ay2 = 0.0
 az2 = 0.0
 ax3 = 0.0
 ay3 = 0.0
 az3 = 0.0

 # Recalculate r**3 denominators

 r12 = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) + (z1-z2)*(z1-z2)
 r312 = r12*sqrt(r12)
 r13 = (x1-x3)*(x1-x3) + (y1-y3)*(y1-y3) + (z1-z3)*(z1-z3)
 r313 = r13*sqrt(r13)
 r23 = (x2-x3)*(x2-x3) + (y2-y3)*(y2-y3) + (z2-z3)*(z2-z3)
 r323 = r23*sqrt(r23)

 # Calculate acceleration components from each body.
 # We add or accumulate the acceleration components provided
 # by each of the other two stars to arrive at ONE resultant
 # Acceleration. We avoid self-gravity!

 ax1 += -G*(x1-x2)*m2/r312
 ax1 += -G*(x1-x3)*m3/r313
 ay1 += -G*(y1-y2)*m2/r312
 ay1 += -G*(y1-y3)*m3/r313
 az1 += -G*(z1-z2)*m2/r312
 az1 += -G*(z1-z3)*m3/r313
 ax2 += -G*(x2-x1)*m1/r312
 ax2 += -G*(x2-x3)*m3/r323
 ay2 += -G*(y2-y1)*m1/r312
 ay2 += -G*(y2-y3)*m3/r323
 az2 += -G*(z2-z1)*m1/r312
 az2 += -G*(z2-z3)*m3/r323
 ax3 += -G*(x3-x2)*m2/r323
 ax3 += -G*(x3-x1)*m1/r313

 286

 ay3 += -G*(y3-y2)*m2/r323
 ay3 += -G*(y3-y1)*m1/r313
 az3 += -G*(z3-z2)*m2/r323
 az3 += -G*(z3-z1)*m1/r313

 # Calculate the second half of the velocity components

 vx1 += 0.5*ax1*dt
 vy1 += 0.5*ay1*dt
 vz1 += 0.5*az1*dt
 vx2 += 0.5*ax2*dt
 vy2 += 0.5*ay2*dt
 vz2 += 0.5*az2*dt
 vx3 += 0.5*ax3*dt
 vy3 += 0.5*ay3*dt
 vz3 += 0.5*az3*dt

 #send x,y,z to the display

 glutPostRedisplay()

def plotfunc():
 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

 # Plot the position of m1

 glPushMatrix()
 glTranslatef(x1,y1,z1)
 glColor3ub(245, 150, 30)
 glutSolidSphere(rad1, 10, 10)
 glPopMatrix()

 # Plot the position of m2

 glPushMatrix()
 glTranslatef(x2,y2,z2)
 glColor3ub(245, 230, 100)
 glutSolidSphere(rad2, 10, 10)
 glPopMatrix()

 # Plot the position of m3

 glPushMatrix()
 glTranslatef(x3,y3,z3)
 glColor3ub(100, 230, 200)
 glutSolidSphere(rad3, 10, 10)
 glPopMatrix()
 glutSwapBuffers()

def main():
 global width
 global height

 287

 glutInit(sys.argv)
 glutInitDisplayMode(GLUT_RGB|GLUT_DOUBLE)
 glutInitWindowPosition(100,100)
 glutInitWindowSize(width,height)
 glutCreateWindow("3 Body Problem")
 glutReshapeFunc(reshape)
 glutDisplayFunc(plotfunc)
 glutKeyboardFunc(keyboard)
 glutIdleFunc(orbits)

 init()
 glutMainLoop()

main()

 Once you have the program saved, run and debug the code if necessary.3 If
everything is running properly, you should see (at some point) a graphics display similar
to the figure 3body below. Watch as the stars dance with each other! Amazing, isn't it?
I never tire of running this simulation and its variations. Even though the general format
of this 3 body program is similar to the 2 body simulation, I think you will agree that this
program is longer and more complicated than the relatively simple 2 body system. The
physics you observe on the screen is MUCH more complex and the interactions
between 3 bodies are far more complicated than the 2 body system. I think you can
probably see why the 3 body problem is not generally solvable using mathematical
equations except in a few specialized instances that we will view in the exercises.

 3body

3 The more complex the code, the more likely you will have errors! Get used to this… debugging
is an essential skill for a successful programmer.

 288

 Looking at the listing of the 3 body program, you should immediately notice that
there are many more variables and calculation statements than in the 2 body code. You
would not think that simply adding one more star to the simulation would create this
much extra work! It is even worse when we add a fourth, fifth, and sixth star as you will
understand in a moment. Since I've already touched on the mathematics and physics of
a gravitational simulation in previous sections, let's look at the code in the new 3 body
program and see if we can understand why we need a more complex computational
system.

Almost immediately we see MANY more global variables. This is too many to
deal with efficiently and we'll fix that later, but for now we'll be programming using the
brute strength and ignorance (BSI) approach. The BSI philosophy is easily stated: Get
the program running correctly first and worry about elegance and efficiency later!4

We need a unique variable for all position, velocity, and acceleration components

for each star mass, hence the need for more variables. The initialization of the position
and velocity variables is also understandable from the last program. Since there is an
additional star mass to consider, it is reasonable to expect that we would require more
initialization code. But then we encounter something new. Why must we initialize the
acceleration components as in the following code?

Initial acceleration components

ax1 = 0.0
ay1 = 0.0
az1 = 0.0
ax2 = 0.0
ay2 = 0.0
az2 = 0.0
ax3 = 0.0
ay3 = 0.0
az3 = 0.0

 We did not have to do this in the 2 body program (although we could have!). The
answer to the question is that we must accumulate all of the forces and combine them
into a single acceleration component for each star. If we do not set an initial value for
the individual acceleration components, we will generate an error during the first
acceleration component calculations. We are setting the initial values of the acceleration
components to zero.

 After initializing the masses for each of the 3 stars and setting the value for G, we
then calculate the radius of each star based on the star mass. We will use these radii in
the def plotfunc() function to display relative star sizes.

rad1 = 0.2*m1
rad2 = 0.2*m2
rad3 = 0.2*m3

4 I'm quite certain this approach is an anathema to the computer science wizards in the crowd. I
am trying to care about that, but I am simply unable to bring myself to give a flying fig at this point.

 289

 Following the radius calculations, we must determine the initial r**3 denominators
for each star pair interaction in the following code:

Calculate r**3 denominators for 3 Body Gravitation
More complex because the motion of EACH star depends
on where the other two stars are located!

r12 = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) + (z1-z2)*(z1-z2)
r312 = r12*sqrt(r12)
r13 = (x1-x3)*(x1-x3) + (y1-y3)*(y1-y3) + (z1-z3)*(z1-z3)
r313 = r13*sqrt(r13)
r23 = (x2-x3)*(x2-x3) + (y2-y3)*(y2-y3) + (z2-z3)*(z2-z3)
r323 = r23*sqrt(r23)

 Why is this code more complicated than the 2 body problem? In the 2 body
simulation, we were concerned only with the single distance between the 2 stars. In the
3 body problem we must calculate forces using the distances between each of the star
pairs. There are 3 stars, so there are 3 unique pairs of stars and therefore, 3 distances
to calculate.5 The variables are named to identify the star pair involved. For example,
r12 refers to the distance between stars m1 and m2. Likewise, r312 refers to the r**3
denominator in Newton's law of gravitation for stars m1 and m2. If we move to 4 bodies,
the number of unique star pairs would be 6 (why?), necessitating doubling the number of
equations above! How many equations would we need for 5 bodies if we keep on
programming in this manner?

 The next section of code is even more complex:

Calculate the initial accelerations
MUCH more complex than 2 Body dynamics
Because each star must use the combined forces
due to gravity of the other 2 stars.
This is why there are TWO ax1, etc statements.

ax1 += -G*(x1-x2)*m2/r312
ax1 += -G*(x1-x3)*m3/r313
ay1 += -G*(y1-y2)*m2/r312
ay1 += -G*(y1-y3)*m3/r313
az1 += -G*(z1-z2)*m2/r312
az1 += -G*(z1-z3)*m3/r313
ax2 += -G*(x2-x1)*m1/r312
ax2 += -G*(x2-x3)*m3/r323
ay2 += -G*(y2-y1)*m1/r312
ay2 += -G*(y2-y3)*m3/r323
az2 += -G*(z2-z1)*m1/r312
az2 += -G*(z2-z3)*m3/r323
ax3 += -G*(x3-x2)*m2/r323
ax3 += -G*(x3-x1)*m1/r313
ay3 += -G*(y3-y2)*m2/r323

5 The pairs are: m1-m2, m1-m3, and m2-m3

 290

ay3 += -G*(y3-y1)*m1/r313
az3 += -G*(z3-z2)*m2/r323
az3 += -G*(z3-z1)*m1/r313

 Why does it seem like we are duplicating statements? Why are there so many
lines of code? Let's look at the first 2 lines in the section. These lines calculate the x
acceleration component of the m1 star mass (i.e. this is why the variable is ax1):

ax1 += -G*(x1-x2)*m2/r312
ax1 += -G*(x1-x3)*m3/r313

Even though these lines look similar, you will see that they are not exactly alike. Why do
we need two lines of code that appear to calculate the same thing? Remember that this
is a 3 body problem and the movement of each star is affected by the sum of the
gravitational forces of the other 2 stars. Therefore, to calculate the acceleration of an
individual star, we must add the gravitational forces of BOTH of the other stars together
to arrive at a vector6 sum of the acceleration components for each star. Strictly
speaking, the += increment operator is only needed in the second statement in each pair
of component calculations (Why?). We could simplify these two statements into one
longer statement (or its algebraic equivalent) as follows:

ax1 = -G*(x1-x2)*m2/r312 - G*(x1-x3)*m3/r313

 Do you see how this single statement performs the same task as the two
statements above? We can save several lines of code this way, particularly in the def
orbits() function as we will soon see.

 After setting the time increment, dt, we then encounter the def init(), def
reshape(), and def keyboard() functions. These functions are not much different
than in the previous 2 body program. The def orbits() function is where the orbital
acceleration, velocity, and position components are calculated. You will notice
immediately that this function is much more lengthy and complex than in the 2 body
problem. Why shouldn't it be? Adding an extra star mass increases the number of
calculations needed to determine the motion of each individual star. However, we can
shorten the def orbits() function by a few lines of code if we combine the
acceleration component calculations as shown above. Note that we must set the
acceleration components back to zero before we recalculate the new acceleration for
each star. Positions and velocities are cummulative, but acceleration is not (Why?). If
we have shortened the acceleration component calculations by combining lines of code
(as illustrated above), we will not need to set the acceleration components to zero each
time increment (Why?).

 In case you are wondering why I used so many lines of acceleration component
code in the original 3 body program rather than the somewhat more efficient method of
combining code statements, remember that I am a teacher and sometimes teachers do
strange things in order to teach concepts! In exercise 1, you will have the opportunity to
shorten the 3body.py code if you wish.

6 Don't forget that a vector contains BOTH magnitude and direction information.

 291

 The def plotfunc() function includes plotting instructions for all 3 stars,
which makes the code a few lines longer than in the 2 body system. However, the
structure of the code remains the same.

 In the 3body.py example program contained in this text, the time increment is
set to dt = 0.001. This time increment allows the simulation to run smoothly on my
workstation, a 2.13 Ghz Centrino Dell M70 laptop purchased in 2005. If your computer
is faster than mine, you may want to select a smaller time increment. If your computer is
a bit older or slower (such as my slothful 900 Mhz desktop), then you may wish to
change this dt variable to a larger time increment such as dt = 0.01. If you are able
to use dt = 0.001, you will see a dance of 3 stars and eventually (be patient!), one of
the stars (the yellow one) will slide away to the upper left leaving the remaining two stars
orbiting each other and moving slowly together to the lower right. According to Piet Hut,
this is a realistic situation. With 3 body dynamics, often one star will gain enough
gravitational acceleration to leave the system. The fleeing star takes much of the kinetic
energy of the triple star system with it. When such a scenario occurs, this may leave the
remaining 2 stars orbiting each other in a binary gravitational embrace. If you use a
value for dt other than 0.001, the dynamics of the 3 body system will change slightly
and you may not obtain the same result.

Exercises

1) OK, I said that it was possible to shorten the program by combining some of the

statements into one line as long as it made sense algebraically. Now is your chance
to do just that. Try to combine or eliminate lines of code and see if you can make the
program shorter in length. Test the program after EACH change you make to verify
that the program still runs correctly! One advantage to making a program shorter is
that you MAY be able to lessen the number of calculations needed to solve the
problem. If so, the program may execute more quickly.

2) The dynamics of the 3 body system are so sensitive to initial conditions that the

slightest change in any of the starting parameters can result in enormous changes in
the behavior of the stars. What you should now do is make changes in the initial
values for the variables. You might first try varying the masses of the stars. Then
you can try changing the gravitational constant G. Finally, you can alter the starting
velocities and positions. I recommend that you make only one change at a time so
that should an interesting behavior appear, you will know exactly what you did to get
that behavior.

3) If you experimented enough in exercise 2, you may have noticed that from time to

time, two stars approached either other and then zoomed away as if they were shot
from a cannon. Why might this happen? You'll recall Newton's law of universal
gravitation (equation 1):

 2
21

r
mmGF =

 292

 If the distance, r, between two stars approaches zero, the force due to gravity will
 increase enormously, resulting in huge accelerations for the stars. This is unnatural
 because two stars that approached each other that closely in nature would collide.
 Our simulation does not take collisions into account. One way to help alleviate this
 problem is to adjust the time step when two stars approach too closely. A smaller
 time step results in more precise calculations and an apparent slowing of the
 system. More precise calculations will often help avoid some collision situations.
 Another possibility, but more difficult to implement, is to allow for the collision and
 combine the colliding masses into one larger object. See if you can figure out
 how to change the time step to a smaller value if the distance between two stars
 becomes too small. Remember to change the time increment back after the close
 approach. What are some drawbacks to changing the time increment? (Note: I
 have already added 0.01 to the denominator to avoid a division by zero error. This
 kind of fix is called a “kludge”. It would be much better to use a physical solution!)

4) Even though the 3 body problem is not solvable using mathematical methods, there

are certain configurations that have been discovered experimentally7 that are
amazingly stable. One famous 3 body configuration involves the stars orbiting each
other in a figure-8 pattern. To replicate this configuation, here is what you must do.
First, set the initial positions of the stars as follows:

 x1 = -0.97000436
 y1 = 0.24308753
 z1 = 0.0
 x2 = 0.97000436
 y2 = -0.24308753
 z2 = 0.0
 x3 = 0.0
 y3 = 0.0
 z3 = 0.0

 Next, set the initial velocities of the stars:

 vx1 = -0.93240737/2
 vy1 = -0.86473146/2
 vz1 = 0.0
 vx2 = -0.93240737/2
 vy2 = -0.86473146/2
 vz2 = 0.0
 vx3 = 0.93240737
 vy3 = 0.86473146
 vz3 = 0.0

 Finally, set the masses of each star to 1.0 and set G = 1.0. If you have everything
 running correctly, you should see an amazing figure-8 orbital dance of stars!

5) Explore the stable 3 body orbit by changing the mass of one of the stars to 1.1 and

see what happens. How long do the orbits remain stable? Experiment with other

7 Using computer simulations much as we are doing here. You can actually do REAL science on
your computer. That is remarkable!

 293

masses such as 1.01 and see how long the orbits remain stable. Try subtly different
velocities and positions to see how such small changes affect the figure-8 orbit.

6) Look up "stable 3 body orbits" online and get a glimpse of what the professional

astronomers are doing! There are some other interesting stable orbit configurations
involving multiple star masses.

7) With the 3 body problem, a stellar distance of zero is more likely than in the 2 body

problem. If the distance between the masses was zero in the simulation, that would
result in a division by zero error and/or a huge gravitational acceleration. The stars
would literally zip away almost instantly! Fortunately in the 2 body problem with
appropriate initial conditions, this is unlikely to occur, but in the 3 body problem and
above, such close encounters could be common. One method of fixing the zero
distance problem is to insure that the distance is never zero! How can we do this?
We can simply add a very small “fudge” factor to the denominator in the equations
where we calculate r3. Something like this would work:

 r312 = r12*sqrt(r12) + 0.01

 Of course, you would have to add this factor to EACH of the r3 denominator
 equations. This is a simple method of preventing a zero radius encounter and
 avoiding infinite gravity. We’ll see this again in the next section.

8) Another possible solution is to change the time increment. You might check for close

encounters between stellar masses and if the stars get within a certain distance, you
can slow down the simulation (how?) and allow for more precision in the orbital
calculations.

9) Finally, it may be possible for you to figure out a method to allow for the stars to

collide and combine their masses. This would be a more difficult, bur perhaps more
accurate, solution to the zero distance problem.

 294

Section 8.5 From 3Body to NBody Using Arrays

 Based on the complexity of the 3body.py program, you can probably imagine
how difficult it would be to extend the simulation to 4, 5, or 6 bodies! How about 20
bodies? We would have to write a specific program for each number of stars that we
wanted to simulate. This is clearly inefficient! Piet Hut has coauthored a textbook which
describes the process of simulating a million stars in a single cluster.8 Can you imagine
how such a program would be written? First, our simple desktop or laptop computers
would not be able to run such a huge simulation due to the incredible number of
calculations involved. However, if we were to make an attempt to write a million-body
simulation based on what we have done so far, the amount of extra code needed would
be several million more lines or thousands of new pages of code! This task is clearly
impossible unless there are better methods of writing such complex simulations. There
ARE better methods and that is the topic of this section. Rather than write several extra
lines of code for each new star we add to the simulation, why not use an array of
variables?9 We can use arrays to store data about each star in our cluster simulation.
This makes the code MUCH more efficient and allows us the flexibility to extend our star
cluster simulation to as many stars as we wish. We probably can't simulate the
dynamics of one million stars, but we can simulate 4, 5, 10 or 20 without much difficulty.
By the way, you may be wondering why such a simulation is called an nbody simulation?
Apparently that's what astrophysicists decided to call multi-body any code that
represents a system of multiple bodies or stars . There is no special reason. "n" can
represent any number, hence "nbody".

 Here is the code for an nbody simulation. Save it as nbody.py.

NBody Code
for multiple stars
based on Piet Hut and Jun Makino's
MSA Text

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from numpy import *
from random import *
import sys

import psyco
psyco.full()

Set the width and height of the window

global width
global height

8 Heggie, Douglas; Hut, Piet (2003) "The Gravitational MillionBody Problem: A Multidisciplinary
Approach to Star Cluster Dynamics", Cambridge University Press
9 If you don't remember what arrays are and how they work, see Section 6.3 "The Chaos Game".

 295

Initial values for window width and height

width = 600
height = 600

global variables for position, velocity and
acceleration components, time increment, and Gravity

global n, m, v, a, r, rad, G, dt

Time increment

dt = 0.0001

Gravitational Constant

G = 1.0

Initial number of stars

n = 20

Initialize arrays for mass, velocity, acceleration
position, radius, and color

m = zeros(n+1, float)
vx = zeros(n+1, float)
vy = zeros(n+1, float)
vz = zeros(n+1, float)
ax = zeros(n+1, float)
ay = zeros(n+1, float)
az = zeros(n+1, float)
rx = zeros(n+1, float)
ry = zeros(n+1, float)
rz = zeros(n+1, float)
rad = zeros(n+1, float)
colr = zeros(n+1, float)
colg = zeros(n+1, float)
colb = zeros(n+1, float)

def init():
 global m, r, a, v, rad, colr, colg, colb
 glClearColor(0.0, 0.0, 0.0, 1.0)

 # Enable depth testing for true 3D effects

 glEnable(GL_DEPTH_TEST)

 # Add lighting and shading effects

 glShadeModel(GL_SMOOTH)
 lightdiffuse = [1.0, 1.0, 1.0, 1.0]

 296

 lightposition = [1.0, 1.0, 1.0, 0.0]
 lightambient = [0.0, 0.0, 0.0, 1.0]
 lightspecular = [1.0, 1.0, 1.0, 1.0]

 # Turn on the light

 glLightfv(GL_LIGHT1, GL_DIFFUSE, lightdiffuse)
 glLightfv(GL_LIGHT1, GL_POSITION, lightposition)
 glLightfv(GL_LIGHT1, GL_AMBIENT, lightambient)
 glMaterialfv(GL_FRONT, GL_DIFFUSE, lightdiffuse)
 glMaterialfv(GL_FRONT, GL_SPECULAR, lightspecular)
 glEnable(GL_LIGHT1)
 glEnable(GL_LIGHTING)
 glEnable(GL_COLOR_MATERIAL)

 # Create a random set of n stars

 for i in range(1, n+1):

 m[i] = 500.*random() + 100.
 rad[i] = 0.0002*m[i]
 colr[i] = abs(sin(m[i]))
 colg[i] = abs(cos(m[i]))
 colb[i] = sqrt(abs(sin(m[i])*cos(m[i])))

 # Assign random positions to each star

 for i in range(1, n+1):
 rx[i] = cos(2*random()-1.25)*cos(5*random()-1.25)
 ry[i] = sin(2*random()-1.25)*cos(5*random()-1.25)
 rz[i] = sin(2*random()-1.25)

 # Set initial velocities and accelerations
 # of each star

 vx[i] = 0.0
 vy[i] = 0.0
 vz[i] = 0.0
 ax[i] = 0.0
 ay[i] = 0.0
 az[i] = 0.0

def orbits():
 global rx, ry, rz, vx, vy, vz, ax, ay, az

 # array calculations make things easier!

 for i in range(1,n+1):

 # First half of leapfrog algorithm

 vx[i] += 0.5*ax[i]*dt

 297

 vy[i] += 0.5*ay[i]*dt
 vz[i] += 0.5*az[i]*dt

 rx[i] += vx[i]*dt
 ry[i] += vy[i]*dt
 rz[i] += vz[i]*dt

 ax[i] = 0.0
 ay[i] = 0.0
 az[i] = 0.0

 # Loop through ALL stars

 for j in range(1,n+1):

 # Do NOT act on self to avoid infinity!
 # Only calculate acceleration components
 # if we are working with OTHER stars

 if j != i:

 # Arrays are more efficient!
 # r2 calculation could be on 1 line
 # but it wouldn't fit the page margins
 # Also… added 0.01 fudge factor
 # so the stellar diatance is never 0

 r2 = (rx[i]-rx[j])*(rx[i]-rx[j])
 r2 += (ry[i]-ry[j])*(ry[i]-ry[j])
 r2 += (rz[i]-rz[j])*(rz[i]-rz[j])
 r3 = r2*sqrt(r2) + 0.01

 ax[i] += -G*(rx[i]-rx[j])*m[j]/r3
 ay[i] += -G*(ry[i]-ry[j])*m[j]/r3
 az[i] += -G*(rz[i]-rz[j])*m[j]/r3

 # Second half of leapfrog algorithm

 vx[i] += 0.5*ax[i]*dt
 vy[i] += 0.5*ay[i]*dt
 vz[i] += 0.5*az[i]*dt

 glutPostRedisplay()

def reshape(w, h):

 # To insure we don't have a zero height

 if h==0:
 h = 1

 298

 # Fill the entire graphics window!

 glViewport(0, 0, w, h)

 # Set the projection matrix... our "view"

 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 gluPerspective(45.0, 1.0, 1.0, 1000.0)

 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

 gluLookAt(0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0)

def keyboard(key, x, y):
 # Allows us to quit by pressing 'Esc' or 'q'

 if key == chr(27):
 sys.exit()
 if key == "q":
 sys.exit()

def plotfunc():
 global m
 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

 # Again, hooray for arrays!

 for i in range(1,n+1):
 glPushMatrix()
 glTranslatef(rx[i],ry[i],rz[i])

 glColor3f(colr[i],colg[i],colb[i])
 glutSolidSphere(rad[i],20,20)
 glPopMatrix()

 glutSwapBuffers()

def main():
 global width
 global height

 glutInit(sys.argv)
 glutInitDisplayMode(GLUT_RGB|GLUT_DOUBLE)
 glutInitWindowPosition(100,100)
 glutInitWindowSize(width,height)
 glutCreateWindow("NBody Problem")
 glutReshapeFunc(reshape)
 glutDisplayFunc(plotfunc)
 glutKeyboardFunc(keyboard)

 299

 glutIdleFunc(orbits)

 init()
 glutMainLoop()

main()

 If your program is running correctly, you should see an initial graphics window
that looks something like figure nbody on the next page. Your graphics window will
probably not look exactly like the nbody figure because we chose random initial
positions and sizes for the stars in our program. However, you should see 20 stars
(unless one or more are hiding behind each other) and these stars will begin to move
according to the gravitational attractions between them.

The wonderful thing about using arrays in this program is that we now have the
flexibility to create a star cluster with as many stars as we wish (up to a practical limit, of
course) without making major modifications to the program. If we want a system of 25
stars, we can simply set n = 25 and then save and run the program. The result is a 25
star simulation! The drawback to using arrays is that arrays can be difficult to implement
and understand. It is often hard to visual how arrays are utilized within a particular
program and the nbody.py code is no exception. Different programming languages
utilize arrays in different ways. Python is not particularly difficult in terms of array usage,
but I find that array structures within C and BASIC are far easier to understand. This is
my own personal opinion (and this is my textbook). Let's dig in and see what we can
understand!

 nbody

 The first portion of the nbody.py program does not differ significantly from
previous programs we've written. Very quickly, though, we see something new:

 300

Initialize arrays for mass, velocity, acceleration
position, radius, and color

m = zeros(n+1, float)
vx = zeros(n+1, float)
vy = zeros(n+1, float)
vz = zeros(n+1, float)
ax = zeros(n+1, float)
ay = zeros(n+1, float)
az = zeros(n+1, float)
rx = zeros(n+1, float)
ry = zeros(n+1, float)
rz = zeros(n+1, float)
rad = zeros(n+1, float)
colr = zeros(n+1, float)
colg = zeros(n+1, float)
colb = zeros(n+1, float)

 What is this? Each of the variables on the left side of the = sign has now been
defined as an array. Remember that an array is an entire series or block of variables, all
having the same variable name, but accessed by using a number or index. In the code
above, not only are we defining several arrays, but we are also letting Python know how
large the array needs to be, what kind of values will be stored in the array, and to start
the array with nothing but zeroes. We are starting with zeros in order to have SOME
value or number in each array element. Without a starting value in each array element,
Python would most likely produce an error when we attempt to calculate and store a new
value in the same location. We also specify that the arrays are floating point numbers.
In order, the arrays store the following information:

m – masses of the individual stars
vx – the x velocity component of the individual stars
vy – the y velocity component of the individual stars
vz – the z velocity component of the individual stars
ax – the x acceleration component of the individual stars
ay – the y acceleration component of the individual stars
az – the z acceleration component of the individual stars
rx – the x coordinate of each star
ry – the y coordinate of each star
rz – the z coordinate of each star
rad – the radius of each star
colr – the red color parameter of each star
colg – the green color parameter of each star
colb – the blue color parameter of each star

Let's take a closer look at one of the code statements:

vx = zeros(n+1,float)

 In the statement above, the vx array will hold the x velocity component for each
of the stars in our simulation. The n+1 sets the size of the array. Why n+1? We simply

 301

can't have just n, the number of stars, as the number of elements in our array.
Remember that we start counting array elements in Python (and most programming
languages) at zero, so we must add 1 to the size of each array in order to conveniently
start counting at 1.

 Once the array is filled with values, we access each star's information as follows:

Star 1

x velocity component = vx[1]
y velocity component = vy[1]
z velocity component = vz[1]

Star 2

x velocity component = vx[2]
y velocity component = vy[2]
z velocity component = vz[2]

Star 3

x velocity component = vx[3]
y velocity component = vy[3]
z velocity component = vz[3]
.
.
.
Star 10

x velocity component = v[10]
y velocity component = v[10]
z velocity component = v[10]

 Notice that each star's velocity components are stored in a vx[i], vy[i], or
vz[i] array. The index of the array variable determines which star we are currently
accessing. For example, the fourth star's z velocity component would be vz[4]. Why?
What is the index for the y velocity component of the sixth star? A similar line of
reasoning can be employed to understand the acceleration and position arrays.

 Accessing the information contained in a simple array is relatively simple. One
method would be to use a for loop ranging from 1 to n + 1. This is the method
employed in the nbody.py code.

 In the def init(): function, we see some new statements.

Enable depth testing for true 3D effects

glEnable(GL_DEPTH_TEST)

Add lighting and shading effects

 302

glShadeModel(GL_SMOOTH)
lightdiffuse = [1.0, 1.0, 1.0, 1.0]
lightposition = [1.0, 1.0, 1.0, 0.0]
lightambient = [0.30, 0.30, 0.30, 1.0]
lightspecular = [1.0, 1.0, 1.0, 1.0]

glLightfv(GL_LIGHT1, GL_DIFFUSE, lightdiffuse)
glLightfv(GL_LIGHT1, GL_POSITION, lightposition)
glLightfv(GL_LIGHT1, GL_AMBIENT, lightambient)
glMaterialfv(GL_FRONT, GL_DIFFUSE, lightdiffuse)
glMaterialfv(GL_FRONT, GL_SPECULAR, lightspecular)
glEnable(GL_LIGHT1)
glEnable(GL_LIGHTING)
glEnable(GL_COLOR_MATERIAL)

 Objects intended to be displayed as solid or in 3D look much more realistic when
lighting and depth effects are added. OpenGL has a built-in lighting system that allows a
programmer to easily add lighting to a display scene. The first line,
glEnable(GL_DEPTH_TEST) isn't exactly part of the lighting sequence, but allows for
the proper display of 3D objects when one object, a star in this simulation, passes in
front of another object. With GL_DEPTH_TEST enabled, objects that are supposed to be
hidden by another object ARE hidden. This may not seem very important, but such an
effect greatly adds to the illusion of 3D on a flat screen monitor. If you comment out this
line and run the simulation again, you may be able to see the difference depth-testing
makes in a 3D scene. Trust me when I tell you that this is a great feature in OpenGL! In
the "old day", we had to actually calculate hidden lines and points in the code. That was
not fun and tended to be difficult at best.

 The next line, glShadeModel(GL_SMOOTH) allows the shading of an object to
have a smooth appearance. For example, if two different colors are used at different
points on a 3D object, GL_SMOOTH allows an interpolated, gradual blend of the two
colors on all points in between.

 The actual lighting occurs here:

lightdiffuse = [0.85, 0.85, 0.85, 0.0]
lightposition = [10.0, 10.0, 100.0, 0.0]
lightambient = [0.25, 0.25, 0.25, 0.0]
lightspecular = [1.0, 1.0, 1.0, 1.0]

glLightfv(GL_LIGHT1, GL_DIFFUSE, lightdiffuse)
glLightfv(GL_LIGHT1, GL_POSITION, lightposition)
glLightfv(GL_LIGHT1, GL_AMBIENT, lightambient)
glMaterialfv(GL_FRONT, GL_DIFFUSE, lightdiffuse)
glMaterialfv(GL_FRONT, GL_SPECULAR, lightspecular)
glEnable(GL_LIGHT1)
glEnable(GL_LIGHTING)
glEnable(GL_COLOR_MATERIAL)

 303

 The first three lines each represent an array of values that we will use to
configure the behavior, placement, and background lighting. The first 3 values
correspond to red, green, and blue color combinations. The fourth value is the alpha
parameter, which deals with color transparency and blending. The glLightfv lines set
the diffuse lighting, the x,y,z position of the light, and the ambient background light
levels. The "fv" at the end of glLightfv means that we will be using a floating point
array or vector10 of values stored in a single array variable (such as lightdiffuse) to
set the parameters of the glLightfv command. The glMaterialfv function allows
the color of the 3D objects to be displayed properly when lighting is employed. We then
turn on the lighting by specifying a light glEnable(GL_LIGHT1), turning on the
"power" to the light glEnable(GL_LIGHTING), and enabling color
glEnable(GL_COLOR_MATERIAL). The GL_SPECULAR parameter triggers the
"shininess" of an object. It is possible to create a mirror effect using OpenGL lighting.
OpenGL has the capability for multiple lights (up to 8 at last check) and complex lighting
effects. Objects can be illuminated from the exterior and from inside. Interior lighting
(emission) can render a glowing appearance to objects. Lighting effects are both an art
and a science. You should take the time to explore different lighting effects and make
certain you research OpenGL lighting online! There are a LOT more options than we
display in this simulation.

 After we apply lighting, we then create our stars based on the number we
assigned earlier, in this case, n = 20.

Create a random set of n stars

for i in range(1, n+1):

 m[i] = 500.*random() + 100.
 rad[i] = 0.0002*m[i]
 colr[i] = abs(sin(m[i]))
 colg[i] = abs(cos(m[i]))
 colb[i] = sqrt(abs(sin(m[i])*cos(m[i])))

In this code block, we create n stars (n = 20 in this example). Remember that when
we use for loops, simply stating range(1,n) will not suffice since the loop will stop
prior to reaching n. We must specify range(1, n+1) in order to create n stars. The
mass of each star is randomly assigned a floating point value from 100 to 500. The
radius of each star is calculated based on the mass and the red, green, and blue colors
are assigned, again based on the mass of each star. The mathematical statements for
color assignments are arbitrary.

Assign random positions to each star

for i in range(1, n+1):
 rx[i] = cos(2*random()-1.25)*cos(5*random()-1.25)
 ry[i] = sin(2*random()-1.25)*cos(5*random()-1.25)
 rz[i] = sin(2*random()-1.25)

10 No, I'm not trying to confuse you. A vector in physics has magnitude and direction. Another
definition for vector is a single row or column of values.

 304

 # Set initial velocities and accelerations
 # of each star

 vx[i] = 0.0
 vy[i] = 0.0
 vz[i] = 0.0
 ax[i] = 0.0
 ay[i] = 0.0
 az[i] = 0.0

Each star is assigned a random set of x, y, and z coordinates stored in the rx, ry, and rz
arrays. The position assignment statements are the parametric equations for a sphere,
so hopefully we'll get a somewhat spherical region of stars surrounding the origin. With
small numbers for n, we obviously can't expect a perfect sphere. Once the stars are in
place, the velocity and acceleration components are set to 0.0.

 The true power of arrays is revealed in the def orbits(): function. With
arrays, we no longer have to worry about the complexity of our orbital calculations
increasing every time we add an additional star mass. Here is the def orbits():
function:

def orbits():
 global rx, ry, rz, vx, vy, vz, ax, ay, az

 # array calculations make things easier!

 for i in range(1,n+1):

 # first half of leapfrog algorithm

 vx[i] += 0.5*ax[i]*dt
 vy[i] += 0.5*ay[i]*dt
 vz[i] += 0.5*az[i]*dt

 rx[i] += vx[i]*dt
 ry[i] += vy[i]*dt
 rz[i] += vz[i]*dt

 ax[i] = 0.0
 ay[i] = 0.0
 az[i] = 0.0

 # Loop through ALL stars

 for j in range(1,n+1):

 # Do NOT act on self to avoid infinity!
 # Only calculate acceleration components
 # if we are working with OTHER stars

 305

 if j != i:

 # Arrays are more efficient!
 # r2 calculation could be on 1 line
 # but it wouldn't fit the page margins
 # Also… added 0.01 fudge factor
 # so the stellar diatance is never 0

 r2 = (rx[i]-rx[j])*(rx[i]-rx[j])
 r2 += (ry[i]-ry[j])*(ry[i]-ry[j])
 r2 += (rz[i]-rz[j])*(rz[i]-rz[j])
 r3 = r2*sqrt(r2) + 0.01

 ax[i] += -G*(rx[i]-rx[j])*m[j]/r3
 ay[i] += -G*(ry[i]-ry[j])*m[j]/r3
 az[i] += -G*(rz[i]-rz[j])*m[j]/r3

 # Second half of leapfrog algorithm

 vx[i] += 0.5*ax[i]*dt
 vy[i] += 0.5*ay[i]*dt
 vz[i] += 0.5*az[i]*dt

 glutPostRedisplay()

The first nine lines calculate the velocities and positions for the forward half of the
leapfrog algorithm.11 The += operators accumulate the velocity and position components
for each star in the simulation. The velocities and positions are running totals and
depend on the previous values for each of the variables used. The acceleration
components are NOT cummulative and must be recalculated each time the def
orbits() function is called. This is why we set the acceleration components to 0.0 in
this part of the loop. The next section is crucial:

 # Loop through ALL stars

 for j in range(1,n+1):

 # Do NOT act on self to avoid infinity!
 # Only calculate acceleration components
 # if we are working with OTHER stars

 if j != i:

 # Arrays are more efficient!
 # r2 calculation could be on 1 line
 # but it wouldn't fit the page margins

 r2 = (rx[i]-rx[j])*(rx[i]-rx[j])

11 This is calculus, specifically we are numerically solving the difference equations for
gravitational effects. Yes, leapfrog is its name.

 306

 r2 += (ry[i]-ry[j])*(ry[i]-ry[j])
 r2 += (rz[i]-rz[j])*(rz[i]-rz[j])
 r3 = r2*sqrt(r2) + 0.01

 ax[i] += -G*(rx[i]-rx[j])*m[j]/r3
 ay[i] += -G*(ry[i]-ry[j])*m[j]/r3
 az[i] += -G*(rz[i]-rz[j])*m[j]/r3

 In order to calculate ALL the gravitational forces acting on each star, we must
take each star individually (using the i loop) and move through all the OTHER stars in
the cluster (using the j loop), adding all the acceleration components together to arrive a
single value for the acceleration components acting on each individual star. We must
make certain that we do NOT calculate a star's gravitational forces on itself to avoid a
meaningless infinite result. That is the purpose of the if j != i: conditional
statement. If j is NOT equal to i, then the star is "legitimate" and can be used for
calculation.

 Using arrays, we are able to perform all calculations more efficiently than in
previous programs! The for i in range(1, n+1): loop chooses each star
individually. The for j in range(1,n+1): starts a second or inner loop to look at
all the OTHER stars in the cluster. The combination of i and j indexes in the
calculations help perform the same computations that we did in the previous star cluster
programs. The r2 calculations are separated into several lines to avoid running over the
page margins. We can do this by using the += operator, which adds or accumulates the
new calculated values for r2 into the previous values. Notice the (rx[i] – rx[j])
and similar statements in the r2 and ax, ay, and az code lines. It is in these statements
that we use loop indexes and arrays to calculate all the interactions between each star in
our simulated cluster. Finally, we can compute the second half of the velocity
components and call the glutPostRedisplay() command to update the graphics
window.

 The def reshape(w, h): and def keyboard(key, x, y): functions are
similar to previous programs. This particular keyboard function allows us to exit the
program using either the ESC or 'q' key. The def plotfunc(): display function is
much simpler than in the previous 3body program:

def plotfunc():
 global m
 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

 # Again, hooray for arrays!

 for i in range(1,n+1):
 glPushMatrix()
 glTranslatef(rx[i],ry[i],rz[i])

 glColor3f(colr[i],colg[i],colb[i])
 glutSolidSphere(rad[i],20,20)
 glPopMatrix()

 307

 glutSwapBuffers()

Using arrays, we can simply loop through each of the stars (n = 20 in this program)
translating to the proper position and plotting the star using the previously calculated
radius and color scheme. Nothing could be simpler!

 I won't pretend to have present you with everything there is to know about using
arrays. Arrays are a topic that require time and mental effort on your part to understand.
The wonderful thing about arrays in this program is that we can select an arbitrary
number of stars by changing ONE SIMPLE LINE OF CODE. If we want 50 stars, we set
n = 50 at the start of the program. If we want 100 stars, set n = 100. There is no
theoretical limit to n, however there are practical limits determined by your computer and
Python. It would be nice to simply specify n = 1000000 to simulate one million stars.
However, if your computer ran slowly with 100 stars, it might not run at all with 1000000
stars due to memory and processor limitations. Piet Hut and Jun Makino run very large
star cluster simulations using a specialized computer call the GRAPE.12 Look up Jun
Makino and GRAPE using Google and see what information is available. The GRAPE is
a true super-computer, but it is very specialized and works only with star cluster
dynamics problems.

 In the next section, we are going to add the ability to fly through this nbody.py
program as if we were in a space ship. 3D navigation is an important function in terms
of simulations and gaming.

Exercises

1) Experiment with lighting. How might you do this? You could change some of the

values in this program or even better, look up OpenGL lighting online and figure out
how lighting actually works. For example, see if you can make the stars actually
GLOW like stars!

2) Increase the value for n until your computer begins to run slowly and/or badly. You

will notice that instead of smooth animation, the updating becomes ragged and
"jerky". You can also adjust the time increment (dt) by making it smaller to see if this
helps the animation. What is the maximum star limit for relatively smooth animation
on your computer?

3) Yes, you can try n = 1000000. What happens? Nothing? Do you think nothing is

going on or are the number of calculations simply too huge to complete in a
reasonable amount of time?

4) Feel free to experiment in other ways. For example, you can adjust the mass,

radius, and color calculations if you choose.

5) How might you assign the initial values for position and velocity "on purpose" in

order to replicate the stable figure 8 orbit from the last section? Hint: You can do
something like this --> rx[3] = -0.234

12 Jun Makino and Piet Hut developed the specialized GRAPE computer themselves!

 308

6) Are there any stable orbit configurations of more than 3 bodies? Do some research
online and see if you can find any such “beasts”.

7) You do not have to build stars that are spherical and solid. Using wireframe stars

should speed up the simulation somewhat. For example, using
glutWireSphere(rad[i], 5, 5) may make you program run a bit faster. You
might even try cubes or tetrahedrons. What do orbiting teapots look like?

8) A great online resource for the nbody problem in addition to Piet Hut’s website is

Sverre Aarseth’s great website www.sverre.com Sverre is one of the pioneers in
computational nbody simulation.

9) If you want to see what happens when the distance between stars is zero, remove

the 0.01 distance fudge factor from the r3 = r2*sqrt(r2) + 0.01 equation.
You should see several stars zipping away at high rates of speed! With the distance
factor in place, this does not happen.

 309

Section 8.6 Navigating the Stars

 One of the drawbacks of the nbody.py program is that we are limited in what we
can view. Using the gluLookAt command we can set the position of our eye or camera
at the start of the program, but what happens if the stars move out of our sight? It would
be nice to have the capability of navigating or flying through the star cluster, changing
our position and our view as needed. This would add great flexibility to our program and
might even suggest the possibility of creating a (dare I say it?) game at some point in our
programming journey! How can we add a navigation feature to our simulation? It really
isn’t too difficult. We can use keyboard routines to move our camera (OK… our
spaceship) position via the gluLookAt function. gluLookAt is a very powerful
command and is flexible enough to allow us to use it at any time and not just at program
startup. I’m going to list the entire nbody.py program again, with the navigation functions
added. You can simply reuse the program from the last section, rename it
flynbody.py or something similar, and make the changes and additions where
necessary. The result is interesting at the very least!

Fly Through NBody Code
for multiple stars
based on Piet Hut and Jun Makino's
MSA Text

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from numpy import *
from random import *
import sys

import psyco
psyco.full()

Set the width and height of the window

global width
global height

Initial values for window width and height

width = 500
height = 500

global variables for position, velocity and
acceleration components, time increment, and Gravity

global n, m, v, a, r, rad, G, dt

gluLookAt variables

global x, y, z, lx, ly, lz

 310

Time increment

dt = 0.001

Gravitational Constant

G = 1.0

Initial number of stars

n = 20

Initialize arrays for mass, velocity, acceleration
position, radius, and color

m = zeros(n+1, float)
vx = zeros(n+1, float)
vy = zeros(n+1, float)
vz = zeros(n+1, float)
ax = zeros(n+1,float)
ay = zeros(n+1,float)
az = zeros(n+1, float)
rx = zeros(n+1,float)
ry = zeros(n+1,float)
rz = zeros(n+1,float)
rad = zeros(n+1,float)
colr = zeros(n+1,float)
colg = zeros(n+1,float)
colb = zeros(n+1,float)

def initgl():
 global m, r, a, v, rad, colr, colg, colb
 glClearColor(0.0, 0.0, 0.0, 1.0)

 # Enable depth testing for true 3D effects

 glEnable(GL_DEPTH_TEST)

 # Add lighting and shading effects

 glShadeModel(GL_SMOOTH)
 lightdiffuse = [1.0, 1.0, 1.0, 1.0]
 lightposition = [1.0, 1.0, 1.0, 0.0]
 lightambient = [0.0, 0.0, 0.0, 1.0]
 lightspecular = [1.0, 1.0, 1.0, 1.0]

 # Turn on the light

 glLightfv(GL_LIGHT1, GL_DIFFUSE, lightdiffuse)
 glLightfv(GL_LIGHT1, GL_POSITION, lightposition)
 glLightfv(GL_LIGHT1, GL_AMBIENT, lightambient)

 311

 glMaterialfv(GL_FRONT, GL_DIFFUSE, lightdiffuse)
 glMaterialfv(GL_FRONT, GL_SPECULAR, lightspecular)
 glEnable(GL_LIGHT1)
 glEnable(GL_LIGHTING)
 glEnable(GL_COLOR_MATERIAL)

def init():
 # Create a random set of n stars

 for i in range(1, n+1):

 m[i] = 500.*random() + 100.
 rad[i] = 0.0002*m[i]
 colr[i] = abs(sin(m[i]))
 colg[i] = abs(cos(m[i]))
 colb[i] = sqrt(abs(sin(m[i])*cos(m[i])))

 # Assign random positions to each star

 for i in range(1, n+1):
 rx[i] = cos(2*random()-1.25)*cos(5*random()-1.25)
 ry[i] = sin(2*random()-1.25)*cos(5*random()-1.25)
 rz[i] = sin(2*random()-1.25)

 # Set initial velocities and accelerations
 # of each star

 vx[i] = 0.0
 vy[i] = 0.0
 vz[i] = 0.0
 ax[i] = 0.0
 ay[i] = 0.0
 az[i] = 0.0

def tilt(azim):
 # Tilts the camera/spaceship up and down

 global ly
 ly = sin(azim)
 lz = -cos(azim)
 glLoadIdentity()
 gluLookAt(x, y, z, x + lx, y + ly, z + lz, 0.0, 1.0, 0.0)

def latmove(mov):
 # Moves the camera/spaceship forward and backward
 # along the line of sight

 global x, y, z
 x += mov*lx*n/10
 y += mov*ly*n/10
 z += mov*lz*n/10
 glLoadIdentity()

 312

 gluLookAt(x, y, z, x + lx, y + ly, z + lz, 0.0, 1.0, 0.0)

def swivel(theta):
 # Swivels the camera/spaceship left and right

 global lx, lz
 lx = sin(theta)
 lz = -cos(theta)
 glLoadIdentity()
 gluLookAt(x, y, z, x + lx, y + ly, z + lz, 0.0, 1.0, 0.0)

def orbits():
 global rx, ry, rz, vx, vy, vz, ax, ay, az

 # array calculations make things easier!

 for i in range(1,n+1):

 # First half of leapfrog algorithm

 vx[i] += 0.5*ax[i]*dt
 vy[i] += 0.5*ay[i]*dt
 vz[i] += 0.5*az[i]*dt

 rx[i] += vx[i]*dt
 ry[i] += vy[i]*dt
 rz[i] += vz[i]*dt

 ax[i] = 0.0
 ay[i] = 0.0
 az[i] = 0.0

 # Loop through ALL stars

 for j in range(1,n+1):

 # Do NOT act on self to avoid infinity!
 # Only calculate acceleration components
 # if we are working with OTHER stars

 if j != i:

 # Arrays are more efficient!
 # r2 calculation could be on 1 line
 # but it wouldn't fit the page margins

 r2 = (rx[i]-rx[j])*(rx[i]-rx[j])
 r2 += (ry[i]-ry[j])*(ry[i]-ry[j])
 r2 += (rz[i]-rz[j])*(rz[i]-rz[j])
 r3 = r2*sqrt(r2) + 0.01

 313

 ax[i] += -G*(rx[i]-rx[j])*m[j]/r3
 ay[i] += -G*(ry[i]-ry[j])*m[j]/r3
 az[i] += -G*(rz[i]-rz[j])*m[j]/r3

 # Second half of leapfrog algorithm

 vx[i] += 0.5*ax[i]*dt
 vy[i] += 0.5*ay[i]*dt
 vz[i] += 0.5*az[i]*dt

 glutPostRedisplay()

def reshape(w, h):

 # To insure we don't have a zero height

 if h==0:
 h = 1

 # Fill the entire graphics window!

 glViewport(0, 0, w, h)

 # Set the projection matrix... our "view"

 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 gluPerspective(45.0, 1.0, 1.0, 1000.0)

 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

 gluLookAt(x, y, z, x + lx, y + ly, z + lz, 0.0, 1.0, 0.0)

def keyboard(key, x, y):
 # Allows us to quit by pressing 'Esc' or 'q'

 if key == chr(27):
 sys.exit()
 if key == "q":
 sys.exit()

 # Reset view to original position
 if key == "z":
 zap()

The specialkey function looks for arrow keys
def specialkey(key, x, y):
 global ang, updown, move

 # mode checks for SHIFT key

 314

 mode = glutGetModifiers()

 # Left arrow key
 if key == GLUT_KEY_LEFT:
 ang = -0.01

 # Right arrow key
 if key == GLUT_KEY_RIGHT:
 ang = 0.01

 # Up arrow key
 if key == GLUT_KEY_UP:
 # If shift key is used, tilt upward
 if mode == GLUT_ACTIVE_SHIFT:
 updown = -0.01
 # Otherwise move forward
 else:
 move = 0.05

 # Down arrow key
 if key == GLUT_KEY_DOWN:
 # If shift key is used, tilt downward
 if mode == GLUT_ACTIVE_SHIFT:
 updown = 0.01
 # Otherwise move backward
 else:
 move = -0.05

def plotfunc():
 global m, move, angle, ang, azim, updown

 # moving around in 3D
 # Based on specialkeys

 # move forward and backward
 # along the line of sight
 if move != 0:
 latmove(move)
 move = 0

 # Swivel left and right
 if ang != 0.0:
 angle += ang*n/10
 swivel(angle)
 ang = 0.0

 # Tilt up and down
 if updown != 0.0:
 azim += updown
 tilt(azim)
 updown = 0.0

 315

 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

 # Again, hooray for arrays!

 for i in range(1,n+1):
 glPushMatrix()
 glTranslatef(rx[i],ry[i],rz[i])

 glColor3f(colr[i],colg[i],colb[i])
 glutSolidSphere(rad[i],20,20)
 glPopMatrix()

 glutSwapBuffers()

def zap():
 global angle, ang, updown, azim, move
 global x, y, z, lx, ly, lz
 # Navigation variables

 angle = 0.0
 ang = 0.0
 updown = 0.0
 azim = 0.0
 move = 0.0

 # Initial values for eyeball position

 x = 0.0
 y = 0.0
 z = 10.0
 lx = 0.0
 ly = 0.0
 lz = -10.0

 # makes certain we set the view "straight ahead"
 swivel(0)

def main():
 global width
 global height

 glutInit(sys.argv)
 glutInitDisplayMode(GLUT_RGB|GLUT_DOUBLE)
 glutInitWindowPosition(100,100)
 glutInitWindowSize(width,height)
 glutCreateWindow("NBody Problem")
 glutReshapeFunc(reshape)
 glutDisplayFunc(plotfunc)
 glutKeyboardFunc(keyboard)
 glutSpecialFunc(specialkey)
 glutIdleFunc(orbits)

 316

 initgl()
 init()
 zap()
 glutMainLoop()

main()

 Assuming that everything has been correctly entered and properly saved, you
should be able to run the program. When you do, you will probably not notice much
difference between this program and the previous nbody.py simulation. However, if
you press one of the arrow keys, you should immediately see a new feature. We can
MOVE within the simulation environment! The instructions for movement are as follows:

The UP arrow key moves us forward along the line of sight
The DOWN arrow key moves us backward along the line of sight
The LEFT arrow key swivels the camera to the left
The RIGHT arrow key swivels the camera to the right
The SHIFT+UP arrow tilts the camera down as if we were diving
The SHIFT+DOWN arrow tilts the camera up as if we were climbing

 Once a new orientation is reached, the UP and DOWN arrow keys move us
along the new line of sight. The result is that we can travel anywhere within the
simulation, even into the middle of the cluster! If you get lost, pressing the "z" key will
"ZAP" you back to the original viewpoint. Neat, isn't it?

 So how does this program differ from the previous nbody program? Let's look at
the listing and see what we can find. Almost immediately we encounter some new
global variables:

gluLookAt variables

global x, y, z, lx, ly, lz

 This set of variables suggests that we are going to do something new with the
gluLookAt statement and we are, of course! Instead of a single def init():
function as in previous programs, this new program divides the initialization up into a
lighting function (def initgl():) and a function to create the stars, star masses,
and initial positions (def init():). Strictly speaking, we do not have to do this, but
sometimes separating discrete tasks into smaller functions makes a program listing
more readable. In this case, we have two tasks: Lighting and star intialization. Why not
create separate functions to perform each task? That is what we have done.

 Following the initialization functions, we see three new functions:

def tilt(azim):
 # Tilts the camera/spaceship up and down
 global ly
 ly = sin(azim)
 lz = -cos(azim)
 glLoadIdentity()
 gluLookAt(x, y, z, x + lx, y + ly, z + lz, 0.0, 1.0, 0.0)

 317

def latmove(mov):
 # Moves the camera/spaceship forward and backward
 # along the line of sight
 global x, y, z
 x += mov*lx*n/10
 y += mov*ly*n/10
 z += mov*lz*n/10
 glLoadIdentity()
 gluLookAt(x, y, z, x + lx, y + ly, z + lz, 0.0, 1.0, 0.0)

def swivel(theta):
 # Swivels the camera/spaceship left and right
 global lx, lz
 lx = sin(theta)
 lz = -cos(theta)
 glLoadIdentity()
 gluLookAt(x, y, z, x + lx, y + ly, z + lz, 0.0, 1.0, 0.0)

As you might be able to guess, the first function, def tilt(azim):, provides a
method for tilting the camera up or down, much like tilting your head. The sin(azim)
and –cos(azim) mathematical functions are used here because tilt would be measured
in terms of an angle, represented by the variable azim13 and tilting results in a shift of
both the y and z positions of objects. The variable, azim, is "passed" to def tilt from
the def specialkeys function elsewhere in the program. We can implement a tilt in
our viewing by pressing both the SHIFT key AND the UP or DOWN arrow keys at the
same time. Notice that once we have "tilted" and stored the numeric value for
sin(azim) and –cos(azim) in the variables ly and lz, we call the gluLookAt
function to load the new tilted view in our graphics window. For your information, the
glLoadIdentity() statement just prior to the gluLookAt command uses the identity
matrix14 to set the current view so that any future changes will be based on our current
position.

 The second function, def latmove(mov):, provides lateral motion along the
current viewing axis using the UP and DOWN arrow keys. In this function, the variable
mov is passed from the def specialkeys function and results in a change in the x, y,
and z coordinates of the camera. Once the new x, y, and z coordinates have been
calculated, the gluLookAt function is called again to create a new scene and simulate
motion forward and backward motion.

 The def swivel(theta): function uses the LEFT and RIGHT arrow keys to
pass an angle theta to the function. Using this angle, the camera can be swivelled
from left to right in a similar fashion as in the def tilt function. This time, however, a
swivel results in movements in the x and z coordinates of the objects in the display

13 Representing azimuth, which is an angle between a reference point and a plane. An example
would be the angle that the moon makes with the horizon as viewed by your eye.
14 The identity matrix is a matrix with 1's along the upper left to lower right diagonal. Multiplying
by the identity matrix produces the original matrix just like multiplying by one produces the original
number.

 318

window. Once the lx and lz variables are defined, they are sent to the gluLookAt
command so the new view can be displayed.

 The def orbits and def reshape functions are unchanged. The def
keyboard function is a bit different, though. We have added a new keystroke
command:

 # Reset view to original position
 if key == "z":
 zap()

 If the "z" key is pressed, the zap() function is called. Let's look at the def
zap(): function now:

def zap():
 global angle, ang, updown, azim, move
 global x, y, z, lx, ly, lz
 # Navigation variables

 angle = 0.0
 ang = 0.0
 updown = 0.0
 azim = 0.0
 move = 0.0

 # Initial values for eyeball position

 x = 0.0
 y = 0.0
 z = 10.0
 lx = 0.0
 ly = 0.0
 lz = -10.0

 # makes certain we set the view "straight ahead"
 swivel(0)

 The def zap function returns the simulation to the original viewpoint by resetting
all gluLookAt variables back to their original values. Sending an angle of 0 to the
swivel function turns the camera "straight ahead" to its original orientation.

 A new set of commands is found in the def specialkeys function:

The specialkey function looks for arrow keys

def specialkey(key, x, y):
 global ang, updown, move

 # mode checks for SHIFT key
 mode = glutGetModifiers()

 319

 # Left arrow key
 if key == GLUT_KEY_LEFT:
 ang = -0.01

 # Right arrow key
 if key == GLUT_KEY_RIGHT:
 ang = 0.01

 # Up arrow key
 if key == GLUT_KEY_UP:
 # If shift key is used, tilt upward
 if mode == GLUT_ACTIVE_SHIFT:
 updown = -0.01
 # Otherwise move forward
 else:
 move = 0.05

 # Down arrow key
 if key == GLUT_KEY_DOWN:
 # If shift key is used, tilt downward
 if mode == GLUT_ACTIVE_SHIFT:
 updown = 0.01
 # Otherwise move backward
 else:
 move = -0.05

 Built into GLUT is the capability of looking for the "special" keys on a keyboard,
such as the ARROW keys, END, HOME, PAGE UP, PAGE DOWN, and SHIFT key
combinations as well as the CTRL and ALT keys. I believe the specialkeys function
is fairly self-explanatory. It is here that we are setting the values of variables that will be
employed in creating movement. By changing the values assigned to these variables,
we can alter how quickly we move. However, fast movement comes at the expense of
smooth movements! Make note of the statement:

 mode = glutGetModifiers()

In this statement, we can check for keys that modify other keys. The SHIFT key is such
a modifier. We can check for the presence of the SHIFT key by the value of the mode
variable. If mode == GLUT_ACTIVE_SHIFT, then the shift key has been pressed.

 The def plotfunc(): function has some added lines of code at the
beginning:

def plotfunc():
 global m, move, angle, ang, azim, updown

 # moving around in 3D
 # Based on specialkeys

 # move forward and backward
 # along the line of sight

 320

 if move != 0:
 latmove(move)
 move = 0

 # Swivel left and right
 if ang != 0.0:
 angle += ang*n/10
 swivel(angle)
 ang = 0.0

 # Tilt up and down
 if updown != 0.0:
 azim += updown
 tilt(azim)
 updown = 0.0

 It is here that we check to see if any of the movement keys have been pressed.
If any of those keys have been active, then the variables move, ang, and updown will
have been changed from 0.0 to a different value (equal to the amount of movement
specified in the def specialkeys function). If any of the variables have a value other
than zero, the appropriate movement function will be called and the new view position
will be displayed. When the latmove, swivel, or tilt functions "do their thing", the
program returns and sets the value of the variable (such as move) back to zero. If we
fail to reset the variable to zero, continuous movement results. Try it! Place a comment
in front of the ang = 0.0 statement, save and run the program, and then press the left
or right arrow key. What happens? There is nothing wrong with this behavior, but it
might make you dizzy! The remainder of the def plotfunc() function is unchanged
from the previous program.

 The only other significant change is in the def main(): function. If you will
look closely, we've added the statement:

 glutSpecialFunc(specialkey)

This command will identify the function that captures the "special" keystrokes needed in
this program. Also notice that prior to issuing the glutMainLoop statement, we have:

 initgl()
 init()
 zap()

in order to call the program startup functions for lighting, stars, and the proper view.

Exercises

1) Explore the movement routines in this program. See if you can change how the

camera... or spaceship if you prefer, moves through space. Research the GLUT
special keys online to see the possibilities for program control.

 321

2) instead of the SHIFT + ARROW key combination for tilting, try to use the PageUp
and PageDown keys instead.

3) What other movements can you think to employ? Can you control the position of the

lighting using some keys, special or otherwise?

4) This is NOT a trivial program by any means. Not only are we simulating star cluster

dynamics, but we are also programming a “fly-through” interactive experience. See if
you can write an original program that will allow you to move in 3D space through a
set of GLUT shapes or objects.

5) If you zoom close enough, you should be able to see stars “collide” in the sense that

they pass through each other. The distance “fudge” factor of 0.01 will actually keep
the stellar centers of mass separate, but the stars can and do pass close enough for
the appearance of a collision to occur. The simplicity of this simulation does not
allow for the fluid dynamics, plasma, and matter interactions of stars to be visualized.
In fact, I’m not entirely certain that we understand fully what happens in such
circumstances. Perhaps this is an area of research that might be of interest to you?

 322

Chapter 9 3D and 3D Animation

 The last chapter was basically an introduction to 2D animation, but I cheated a bit
and added some 3D code to simulate star clusters. OpenGL was originally intended to
create 3D objects, scenes, and animation, so after many pages of 2D topics, 3D is
where we will concentrate our efforts until the end of the book. When discussing 3D
objects and scenes, we need to realize that our monitor screen or laptop dispay is only a
2D surface. I know there are special glasses, headsets, screens, holographic, and
CAVE/CUBE virtual reality display devices that create "true" 3D scenes, but most of
these devices are not easily accessible for mere mortals. What we must be able to do in
order to simulate 3D is to draw or render objects on the screen to provide the illusion of
3 dimensions. We can do this by depth testing so that near objects block or occlude
farther objects. Perspective can be employed to make objects that are farther away
appear smaller. Lighting and shading can create 3D effects and we can even use fog to
make objects appear to fade away in the distance. In my opinion, the most important
OpenGL 3D effect is that we can have objects move or rotate in such a fashion that our
minds become convinced that the virtual world we've created within our display exists in
3D space. You will know that your 3D efforts have succeeded if at some point you begin
to think of your computer monitor or display NOT as a screen, but as a box or world with
height, width, and depth!

Section 9.1 Rotating Objects in Space

 The first program in this chapter is fairly simple. We will allow the placement of
objects in the center of the graphics window and provide a method to rotate the object.
The program will give the user the choice of which GLUT object to display based on the
number keys. Also, the user will have the choice to display the GLUT object as a
wireframe or solid shape. Finally, lighting and perspective will be employed to give a
richer 3D effect.

 Save the following program as glutshapes.py or something similar. This is
not an original program idea, but is a Python translation based on a C program found in
Richard Wright's excellent "OpenGL SuperBible" text.15 I highly recommend it as an
OpenGL reference.

glutshapes.py
Shapes and rotations with special keys

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
import sys

import psyco
psyco.full()

Set the width and height of the window
global width

15 Wright, Richard S. (1999). OpenGL SuperBible (2nd Edition). Pearson Education.

 323

global height

Global variables for rotation angles
global xrot
global yrot

xrot = 0.0
yrot = 0.0

the usual screen dimension variables and lighting

width = 600
height = 600

Generic Lighting values and coordinates
global ambientLight
global diffuseLight
global specular
global specref

ambientLight = (0.35, 0.35, 0.35, 1.0)
diffuseLight = (0.75, 0.75, 0.75, 0.7)
specular = (1.0, 1.0, 1.0, 1.0)
specref = (1.0, 1.0, 1.0, 1.0)

Shape variables
global glutshape
global solid

start with wireframe
solid = "w"

start with a sphere
glutshape = 1

def renderscene():
 global xrot
 global yrot

 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

isolate the rotation by using glPushMatrix()
this keeps the whole scene from rotating!

glPushMatrix()

rotate the GLUT object!

 glRotatef(xrot, 1.0, 0.0, 0.0)
 glRotatef(yrot, 0.0, 1.0, 0.0)

 # choose either wireframe (w) or solid (s) and which

 324

 # GLUT shape you want to view

 if solid == "w":
 if glutshape == 1:
 glutWireSphere(1.0, 25, 25)
 elif glutshape == 2:
 glutWireCube(1.0)
 elif glutshape == 3:
 glutWireCone(0.3, 1.1, 20, 20)
 elif glutshape == 4:
 glutWireTorus(0.3, 1.0, 10, 25)
 elif glutshape == 5:
 glutWireDodecahedron()
 elif glutshape == 6:
 glutWireOctahedron()
 elif glutshape == 7:
 glutWireTetrahedron()
 elif glutshape == 8:
 glutWireIcosahedron()
 elif glutshape == 9:
 glutWireTeapot(1.0)
 elif solid == "s":
 if glutshape == 1:
 glutSolidSphere(1.0, 25, 25)
 elif glutshape == 2:
 glutSolidCube(1.0)
 elif glutshape == 3:
 glutSolidCone(0.3, 1.1, 20, 20)
 elif glutshape == 4:
 glutSolidTorus(0.3, 1.0, 10, 25)
 elif glutshape == 5:
 glutSolidDodecahedron()
 elif glutshape == 6:
 glutSolidOctahedron()
 elif glutshape == 7:
 glutSolidTetrahedron()
 elif glutshape == 8:
 glutSolidIcosahedron()
 elif glutshape == 9:
 glutSolidTeapot(1.0)

 # end the glPushMatrix() command by “popping” the rotation
 # matrix back into place for real-time animation
 glPopMatrix()

 # swap the screen buffers for smooth animation
 glutSwapBuffers()

def init():
 global width
 global height

 325

 glClearColor(0.0, 0.0, 0.0, 1.0)

 # Enable depth testing
 glEnable(GL_DEPTH_TEST)

 glEnable(GL_LIGHTING)
 glLightfv(GL_LIGHT0, GL_AMBIENT, ambientLight)
 glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuseLight)
 glLightfv(GL_LIGHT0, GL_SPECULAR, specular)
 glEnable(GL_LIGHT0)
 glEnable(GL_COLOR_MATERIAL)
 glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE)
 glMaterialfv(GL_FRONT, GL_SPECULAR, specref)
 glMateriali(GL_FRONT, GL_SHININESS, 128)

 glColor3ub(230,100,100)

def specialkeys(key, x, y):
 global xrot
 global yrot

 if key == GLUT_KEY_UP:
 xrot -= 2.0
 if key == GLUT_KEY_DOWN:
 xrot += 2.0
 if key == GLUT_KEY_LEFT:
 yrot -= 2.0
 if key == GLUT_KEY_RIGHT:
 yrot += 2.0

 glutPostRedisplay()

def reshape(w, h):
 lightPos = (-50.0, 50.0, 100.0, 1.0)
 nRange = 2.0

 if h==0:
 h = 1

 glViewport(0, 0, w, h)

 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 # this section allows for window reshaping while
 # maintaining a “normal” GLUT shape

 if w <= h:
 glOrtho(-nRange, nRange, -nRange*h/w, nRange*h/w, -nRange, nRange)
 else:
 glOrtho(-nRange*w/h, nRange*w/h, -nRange, nRange, -nRange, nRange)

 326

 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

 glLightfv(GL_LIGHT0, GL_POSITION, lightPos)

def keyboard(key, x, y):
 global glutshape, solid
 if key == chr(27) or key == "q":
 sys.exit()
 try:
 if int(key) < 10:
 glutshape = int(key)
 except:
 pass

 if key == "w" or key == "s":
 solid = key

 glutPostRedisplay()

def main():

 global width
 global height

 # Setup for double-buffered display and depth testing
 glutInitDisplayMode(GLUT_RGB|GLUT_DOUBLE|GLUT_DEPTH)
 glutInitWindowPosition(100,100)
 glutInitWindowSize(width,height)
 glutInit(sys.argv)
 glutCreateWindow("GLUT Shapes... Rotations")

 init()

 glutReshapeFunc(reshape)

 glutDisplayFunc(renderscene)
 glutKeyboardFunc(keyboard)
 glutSpecialFunc(specialkeys)
 glutMainLoop()

main()

 If everything runs correctly, you should see the graphics window in figure
glutshape when the program executes.

 327

 glutshape

 Pressing the number keys (1-9) should display a unique shape for each number.
Also, the "w" and "s" keys toggle from wireframe to solid shapes and the arrow keys
allow you to rotate the shape on each axis.

 There are a couple of new concepts in this program and both are related to an
interactive experience using the keyboard. The first involves the rotation of the the
GLUT shapes:

Global variables for rotation angles
global xrot
global yrot

xrot = 0.0
yrot = 0.0

 We define two global variables, xrot and yrot, to store values (in degrees) for
rotation around the x and y axes. Then in the def specialkeys(): function, we use
these variables with the keyboard arrow keys and conditional statements to provide a
method for increasing or decreasing the values of the xrot and yrot variables.

def specialkeys(key, x, y):
 global xrot
 global yrot

 if key == GLUT_KEY_UP:
 xrot -= 2.0
 if key == GLUT_KEY_DOWN:
 xrot += 2.0
 if key == GLUT_KEY_LEFT:

 328

 yrot -= 2.0
 if key == GLUT_KEY_RIGHT:
 yrot += 2.0

 glutPostRedisplay()

 Then in the first section of def renderscene(): we use the values stored in
xrot and yrot to “feed” a rotation angle into a new OpenGL command, glRotatef().
After the rotation matrix is complete, a series of conditional statements determines
whether or not we view a wireframe or solid object. We start with a few simple global
variables to store the shape and state of the GLUT object we wish to display:

Shape variables
global glutshape
global solid

start with wireframe
solid = "w"

start with a sphere
glutshape = 1

def renderscene():
 global xrot
 global yrot

 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

isolate the rotation by using glPushMatrix()
this keeps the whole scene from rotating!

glPushMatrix()

rotate the GLUT object!

 glRotatef(xrot, 1.0, 0.0, 0.0)
 glRotatef(yrot, 0.0, 1.0, 0.0)

 # choose either wireframe (w) or solid (s) and which
 # GLUT shape you want to view

 if solid == "w":
 if glutshape == 1:
 glutWireSphere(1.0, 25, 25)
 elif glutshape == 2:
 glutWireCube(1.0)
 elif glutshape == 3:
 glutWireCone(0.3, 1.1, 20, 20)
 elif glutshape == 4:
 glutWireTorus(0.3, 1.0, 10, 25)
 elif glutshape == 5:

 329

 glutWireDodecahedron()
 elif glutshape == 6:
 glutWireOctahedron()
 elif glutshape == 7:
 glutWireTetrahedron()
 elif glutshape == 8:
 glutWireIcosahedron()
 elif glutshape == 9:
 glutWireTeapot(1.0)
 elif solid == "s":
 if glutshape == 1:
 glutSolidSphere(1.0, 25, 25)
 elif glutshape == 2:
 glutSolidCube(1.0)
 elif glutshape == 3:
 glutSolidCone(0.3, 1.1, 20, 20)
 elif glutshape == 4:
 glutSolidTorus(0.3, 1.0, 10, 25)
 elif glutshape == 5:
 glutSolidDodecahedron()
 elif glutshape == 6:
 glutSolidOctahedron()
 elif glutshape == 7:
 glutSolidTetrahedron()
 elif glutshape == 8:
 glutSolidIcosahedron()
 elif glutshape == 9:
 glutSolidTeapot(1.0)

 # end the glPushMatrix() command by “popping” the rotation
 # matrix back into place for real-time animation
 glPopMatrix()

 # swap the screen buffers for smooth animation
 glutSwapBuffers()

There are a couple of things in this def renderscene(): function worth
scrutinizing a bit more closely. The first is the rotation commands:

rotate the GLUT object!

 glRotatef(xrot, 1.0, 0.0, 0.0)
 glRotatef(yrot, 0.0, 1.0, 0.0)

The glRotatef command works as follows:

 glRotatef(angle, x-axix, y-axix, z-axis)

You must specify an angle in degrees (xrot and yrot) and an axis (or multiple axes) of
rotation. In this program, we are allowing a complete 360 degree (and beyond) rotation

 330

of the GLUT shapes. However, if you wanted to simply “tilt” an object at a 45.0 degree
angle on the x-axis of rotation ONLY you could write the following:

 glRotatef(45.0, 1.0, 0.0, 0.0)

The following command provides rotation on the y-axis only:

 glRotatef(yrot, 0.0, 1.0, 0.0)

How would you rotate and object on the z-axis only? What happens if you provide
values on each of the 3 axes? Do the values have to be 1.0? Experiment!

 We now know how to rotate objects! This is an extremely valuable feature for
both positioning objects in the field of view and for interaction. The remainder of the def
renderscene(): function is a fairly complex set of conditional statements designed to
allow user selection of GLUT shapes and toggling between solid and wireframe models.

In the next section, we will see how we can animate a 3D object using the
mouse.

Exercises

The program in this section (as in the last chapter) is NOT trivial. You should take time
to understand it completely!

Many of the GLUT shapes have a default size that generally corresponds to a radius of
1.0. Look up the glScalef(x, y, z) command online on in the RedBook and try
inserting it in your program. What does glScalef do? What happens if the values for
x, y, and z are less than 1.0? What happens if the values are different?

There is a variation of the program in this section that is more faithful to Richard S.
Wright’s excellent example and uses a pop-up menu. I’m going to provide the listing
below with the following caveat:16 Some relatively recent versions of GLUT have a bug
that will not allow the creation of right-click menus. If your version of OpenGL/GLUT
does not have this bug (and it probably doesn’t) you should be able to use the program
you’ve just written as a basis for writing a new version as listed. Make certain you save
the new program under a different name!

glutMenuShapes.py
Menu driven shapes and rotations with special keys
Adapted from Richard S. Wright’s OpenGL SuperBible

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
import sys

Set the width and height of the window

16 Caveat = “warning” in Latin. You can impress your friends..

 331

global width
global height

Global variables for rotation angles
global xrot
global yrot

xrot = 0.0
yrot = 0.0

width = 600
height = 600

Light values and coordinates
global ambientLight
global diffuseLight
global specular
global specref

ambientLight = (0.3, 0.3, 0.3, 1.0)
diffuseLight = (0.7, 0.7, 0.7, 0.7)
specular = (1.0, 1.0, 1.0, 1.0)
specref = (1.0, 1.0, 1.0, 1.0)

global glutshape
glutshape = 1

def processmenu(value):
 global glutshape
 glutshape = value
 glutPostRedisplay()

def renderscene():
 global glutshape
 global xrot
 global yrot

 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)
 glPushMatrix()
 glRotatef(xrot, 1.0, 0.0, 0.0)
 glRotatef(yrot, 0.0, 1.0, 0.0)

 if glutshape == 1:
 glutWireSphere(1.0, 25, 25)
 elif glutshape == 2:
 glutWireCube(1.0)
 elif glutshape == 3:
 glutWireCone(0.3, 1.1, 20, 20)
 elif glutshape == 4:
 glutWireTorus(0.3, 1.0, 10, 25)
 elif glutshape == 5:
 glutWireDodecahedron()

 332

 elif glutshape == 6:
 glutWireOctahedron()
 elif glutshape == 7:
 glutWireTetrahedron()
 elif glutshape == 8:
 glutWireIcosahedron()
 elif glutshape == 9:
 glutWireTeapot(1.0)

 elif glutshape == 11:
 glutSolidSphere(1.0, 25, 25)
 elif glutshape == 12:
 glutSolidCube(1.0)
 elif glutshape == 13:
 glutSolidCone(0.3, 1.1, 20, 20)
 elif glutshape == 14:
 glutSolidTorus(0.3, 1.0, 10, 25)
 elif glutshape == 15:
 glutSolidDodecahedron()
 elif glutshape == 16:
 glutSolidOctahedron()
 elif glutshape == 17:
 glutSolidTetrahedron()
 elif glutshape == 18:
 glutSolidIcosahedron()
 elif glutshape == 19:
 glutSolidTeapot(1.0)

 glPopMatrix()
 glutSwapBuffers()

def init():
 global width
 global height

 glClearColor(0.0, 0.0, 0.0, 1.0)

 # Enable depth testing
 glEnable(GL_DEPTH_TEST)

 glEnable(GL_LIGHTING)
 glLightfv(GL_LIGHT0, GL_AMBIENT, ambientLight)
 glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuseLight)
 glLightfv(GL_LIGHT0, GL_SPECULAR, specular)
 glEnable(GL_LIGHT0)
 glEnable(GL_COLOR_MATERIAL)
 glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE)
 glMaterialfv(GL_FRONT, GL_SPECULAR, specref)
 glMateriali(GL_FRONT, GL_SHININESS, 128)

 glColor3ub(230,100,155)

 333

 wiremenu = glutCreateMenu(processmenu)
 glutAddMenuEntry("Sphere", 1)
 glutAddMenuEntry("Cube", 2)
 glutAddMenuEntry("Cone", 3)
 glutAddMenuEntry("Torus", 4)
 glutAddMenuEntry("Dodecahedron", 5)
 glutAddMenuEntry("Octahedron", 6)
 glutAddMenuEntry("Tetrahedron", 7)
 glutAddMenuEntry("Icosahedron", 8)
 glutAddMenuEntry("Teapot", 9)

 solidmenu = glutCreateMenu(processmenu)
 glutAddMenuEntry("Sphere", 11)
 glutAddMenuEntry("Cube", 12)
 glutAddMenuEntry("Cone", 13)
 glutAddMenuEntry("Torus", 14)
 glutAddMenuEntry("Dodecahedron", 15)
 glutAddMenuEntry("Octahedron", 16)
 glutAddMenuEntry("Tetrahedron", 17)
 glutAddMenuEntry("Icosahedron", 18)
 glutAddMenuEntry("Teapot", 19)

 mainmenu = glutCreateMenu(processmenu)
 glutAddSubMenu("Wire", wiremenu)
 glutAddSubMenu("Solid", solidmenu)
 glutAttachMenu(GLUT_RIGHT_BUTTON)

def specialkeys(key, x, y):
 global xrot
 global yrot

 if key == GLUT_KEY_UP:
 xrot -= 2.0
 if key == GLUT_KEY_DOWN:
 xrot += 2.0
 if key == GLUT_KEY_LEFT:
 yrot -= 2.0
 if key == GLUT_KEY_RIGHT:
 yrot += 2.0

 glutPostRedisplay()

def reshape(w, h):
 lightPos = (-50.0, 50.0, 100.0, 1.0)
 nRange = 2.0

 if h==0:
 h = 1

 glViewport(0, 0, w, h)

 glMatrixMode(GL_PROJECTION)

 334

 glLoadIdentity()

 # allows for reshaping the window without distorting
 # the GLUT shape

 if w <= h:
 glOrtho(-nRange, nRange, -nRange*h/w, nRange*h/w, -nRange, nRange)
 else:
 glOrtho(-nRange*w/h, nRange*w/h, -nRange, nRange, -nRange, nRange)

 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

 glLightfv(GL_LIGHT0, GL_POSITION, lightPos)

def keyboard(key, x, y):
 if key == chr(27):
 sys.exit()

def main():

 global width
 global height

 # Setup for double-buffered display and depth testing
 glutInitDisplayMode(GLUT_RGB|GLUT_DOUBLE|GLUT_DEPTH)
 glutInitWindowPosition(100,100)
 glutInitWindowSize(width,height)
 glutInit(sys.argv)
 glutCreateWindow("GLUT Shapes... Rotations")

 init()

 glutReshapeFunc(reshape)

 glutDisplayFunc(renderscene)
 glutKeyboardFunc(keyboard)
 glutSpecialFunc(specialkeys)
 glutMainLoop()

main()

End of program

When you run this program, the initial scene is identical to the program you wrote
at the beginning of this section. However, try right-clicking17 the mouse pointer within
the viewing window. If the version of Python OpenGL/GLUT you have installed is
relatively recent (or relatively old!), you should see a pop-up menu appear. You can
then use this pop-up menu as you would any other mouse menu by left-clicking your
choice. If the program runs correctly, you may see Python protest a bit in the text output

17 Click using the right mouse button as opposed to the usual left mouse button.

 335

pane in the DrPython or Scite programming editor, but these warnings are not usually
serious and can most likely be ignored. On the next page is a snapshot of my desktop
with the pop-up menu displayed.

 Menu capability is a great new function to have at our disposal when writing
interactive routines! Keep this in mind as you begin to write original Python OpenGL
programs, including games.

 In the next section, we will look at more mouse interaction!

 336

Section 9.2 Real Time Interactive Computer Animator (RTICA)

 At this point, I would like for you to run the glutshapes.py program from the
last section again. Rotate the shape to the right and to the left using the right and left
arrow keys. Observe that the rotation appears to follow your command. In other words,
pressing the left arrow causes rotation toward the left and pressing the right arrow
causes rotation toward the right. Now use the up arrow to turn the object 90 degrees “on
its side”. Once you have done this, rotate the object again to the left and to the right.
What happened! Use the up arrow to rotate the object an additional 90 degrees so that
it is “upside-down” in relation to its original position. Again, try to rotate the object to the
left and to the right. Whoa… what is going on here?

 The simple answer is that the rotation provided by glRotatef will always be
relative to the object’s viewpoint rather than from your outside point of view unless you
write additional code to remedy this behavior. My friend George Francis18 and his
math/computer colleagues have developed a fantastic routine for allowing us the
capability of rotating objects from OUR point of view in real time. The mathematics
behind the rotations involves matrices and linear algebra. Essentially, any point or
collection of points in space can be defined by the 3 coordinates of an ordered triple, (x,
y, z), and we can use a matrix of 3 linear equations with these 3 x, y, and z variables to
manipulate the position of the points in space. If we wish to translate and/or transform
these points to another location, we must use the principles of linear algebra to
recalculate the position matrices. Fortunately for us, this is easy using Python code and
the already available OpenGL/GLUT matrix multiplication commands.

 The following program is a wonderful example of smooth mouse interaction. It is
a Python translation of Professor Francis’ illiOctahedron.c program that he uses in
his mathematical visualization REU programming course (Math 198) at the U of I.

pyilliOct.py
From George K. Francis and his C illiOctahedron.c program
and Glenn Chappell for chaptrack rotations

from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
import sys

this array stores the 6 octahedron vertices
global vv
vv = [(1.0, 0.0, 0.0),
 (0.0, 1.0, 0.0),
 (0.0, 0.0, 1.0),
 (-1.0, 0.0, 0.0),
 (0.0, -1.0, 0.0),
 (0.0, 0.0, -1.0)]

18 You met Professor Francis in the first few chapters. He is a math professor extraordinaire at
the University of Illinois and very interested in the visualization of mathematics using computers.
I “borrowed” the name of this section directly from him and I hope he doesn’t mind!

 337

this aff array is the affine matrix which is used
for translation and transformation of coordinates
during rotation. It is an identity matrix

global aff
aff = (1.0,0.0,0.0,0.0,
 0.0,1.0,0.0,0.0,
 0.0,0.0,1.0,0.0,
 0.0,0.0,0.0,1.0)

global wd
global ht
wd = 400
ht = 400

initial mouse position is center of the window

global mouseX
global mouseY
mouseX = wd/2
mouseY = ht/2

def display():
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
 glMatrixMode(GL_MODELVIEW)
 glPushMatrix()
 glLoadIdentity()

do the matrix multiplication to rotate the octahedron
glMultMatrixf(aff)

 # creates the top half of the octahedron
 # if the indents cause problems, fix them!
 glBegin(GL_TRIANGLE_FAN)
 glColor3f(0.0,255.0,0.0)
 glVertex3fv(vv[1])
 glColor3f(0.,0.,255.)
 glVertex3fv(vv[0])
 glColor3f(0.,255.,255.)
 glVertex3fv(vv[5])
 glColor3f(255.,255.,0.)
 glVertex3fv(vv[3])
 glColor3f(255.,0.,0.)
 glVertex3fv(vv[2])
 glColor3f(0.,0.,255.)
 glVertex3fv(vv[0])
 glEnd()

 # creates the bottom half of the octahedron
 glBegin(GL_TRIANGLE_FAN)
 glColor3f(255.0,0.0,255.0)

 338

 glVertex3fv(vv[4])
 glColor3f(0.0,0.0,255.0)
 glVertex3fv(vv[0])
 glColor3f(0.0,255.0,255.0)
 glVertex3fv(vv[5])
 glColor3f(255.,255.,0.)
 glVertex3fv(vv[3])
 glColor3f(255.,0.,0.)
 glVertex3fv(vv[2])
 glColor3f(0.,0.,255.)
 glVertex3fv(vv[0])
 glEnd()

 # uncomment this later
 #glutWireSphere(1.,50,50)

 glPopMatrix()
 glFlush()
 glutSwapBuffers()

def keyboard(key, x, y):
 if key == chr(27) or key == 'q':
 sys.exit(0)
 glutPostRedisplay()

def reshape(width, height):
 global wd
 global ht
 glClearColor(0.0, 0.0, 0.0, 0.0)
 if height == 0:
 height = 1
 wd = width
 ht = height
 glViewport(0,0,wd,ht)
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 if wd<=ht:
 glOrtho(-2.0,2.0,-2.0*ht/wd,2.0*ht/wd,-2.0,2.0)
 else:
 glOrtho(-2.0*wd/ht,2.0*wd/ht,-2.0,2.0,-2.0,2.0)

 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

Here is the mysterious rotation function in homage
to Glenn Chappell
def chaptrack():
 global aff
 global mouseX
 global mouseY
 global wd

 339

 global ht
 dx = (mouseX-wd/2)/256.0
 dy = (mouseY-ht/2)/256.0
 glMatrixMode(GL_TEXTURE)
 glPushMatrix()
 glLoadIdentity()
 glRotatef(dx,0,1.0,0.0)
 glRotatef(dy,1.0,0.0,0.0)
 glMultMatrixf(aff)
 aff = glGetFloatv(GL_TEXTURE_MATRIX)
 glPopMatrix()

def idle():
 chaptrack()
 glutPostRedisplay()

def mousemotion(x,y):
 global mouseX
 global mouseY

mouseX = x
 mouseY = y

def init():
 glEnable(GL_DEPTH_TEST)
 glShadeModel(GL_SMOOTH)

def main() :
 global wd
 global ht
 glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE)
 glutInitWindowPosition(50, 50)
 glutInitWindowSize(wd, ht)
 glutInit([])
 glutCreateWindow("illiOct")
 glutKeyboardFunc(keyboard)
 glutReshapeFunc(reshape)
 glutDisplayFunc(display)

 glutIdleFunc(idle)
 glutPassiveMotionFunc(mousemotion)

 init()

 glutMainLoop()

main()

End Program

 If all goes well when you execute the program you should see the following
display in figure illiOct:

 340

 illiOct

 This program is not long when compared to some of the other programs we’ve
written, but it certainly has some code that is difficult to decipher. When you run the
program… and assuming it is running correctly, move the mouse pointer within the
graphics window. You should see that the octahedron always rotates in the direction the
mouse is moving or pointing. In other words, the rotation is now relative to YOUR
viewpoint. Also notice that the farther you move the mouse pointer away from the center
of the window, the faster the rotation. Let’s see if we can understand at least some of
the code behind this neat little program.

 The first bit of code after the import statements is:

this array stores the 6 octahedron vertices
global vv
vv = [(1.0, 0.0, 0.0),
 (0.0, 1.0, 0.0),
 (0.0, 0.0, 1.0),
 (-1.0, 0.0, 0.0),
 (0.0, -1.0, 0.0),
 (0.0, 0.0, -1.0)]

The vv[] array contains a list of 3D coordinates that correspond to the vertices of the
octahedron. You should pause for a moment and try to visualize how these points

 341

represent an octahedron. If you are successful and can “see” an octahedron in your
mind based on these coordinates, then you are well on your way to working and thinking
in 3D space! If not, hang in there. The following figure MAY help a bit. It isn’t perfect,
but perhaps you’ll get the idea.

 Octahedron on Axes

We will use these vv[] coordinates to draw the octahedron’s 6 vertices and 8 faces.
The next section of code defines what is known as the affine matrix.

this aff array is the affine matrix which is used
for translation and transformation of coordinates
during rotation. It is an identity matrix

global aff
aff = (1.0,0.0,0.0,0.0,
 0.0,1.0,0.0,0.0,
 0.0,0.0,1.0,0.0,
 0.0,0.0,0.0,1.0)

 The affine matrix starts out as an identity matrix. Any matrix multiplied by an
identity matrix does not change the value of the first matrix19, so the initial affine matrix
represents a “clean slate” or ideal set of initial conditions. An affine transformation in
solid geometry preserves the 3D spatial order of the represented points. In this case, we
want ALL of the points of the octahedron… or whatever object we are rotating, to “hang
together”. So, using affine transformations will preserve the shape of the octahedron as
we manipulate it in space. The affine matrix will eventually take on values that will
insure that this 3D shape/space preservation is always the case.

 The variables used to store the mouse movements are as follows:

initial mouse position is center of the window

global mouseX
global mouseY
mouseX = wd/2
mouseY = ht/2

19 This is exactly like multiplying a number by 1 or unity.

 342

We must keep track of both the x and y coordinates of the mouse pointer and the
mouseX and mouseY variables allow us to do this. Initially, we set both variables to the
midpoint of the display windows (how?).

 The def display(): function introduces a couple of new concepts:

def display():
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
 glMatrixMode(GL_MODELVIEW)
 glPushMatrix()
 glLoadIdentity()

do the matrix multiplication to rotate the octahedron
glMultMatrixf(aff)

 # creates the top half of the octahedron
 # if the indents cause problems, fix them!
 glBegin(GL_TRIANGLE_FAN)
 glColor3f(0.0,255.0,0.0)
 glVertex3fv(vv[1])
 glColor3f(0.,0.,255.)
 glVertex3fv(vv[0])
 glColor3f(0.,255.,255.)
 glVertex3fv(vv[5])
 glColor3f(255.,255.,0.)
 glVertex3fv(vv[3])
 glColor3f(255.,0.,0.)
 glVertex3fv(vv[2])
 glColor3f(0.,0.,255.)
 glVertex3fv(vv[0])
 glEnd()

 # creates the bottom half of the octahedron
 glBegin(GL_TRIANGLE_FAN)
 glColor3f(255.0,0.0,255.0)
 glVertex3fv(vv[4])
 glColor3f(0.0,0.0,255.0)
 glVertex3fv(vv[0])
 glColor3f(0.0,255.0,255.0)
 glVertex3fv(vv[5])
 glColor3f(255.,255.,0.)
 glVertex3fv(vv[3])
 glColor3f(255.,0.,0.)
 glVertex3fv(vv[2])
 glColor3f(0.,0.,255.)
 glVertex3fv(vv[0])
 glEnd()

 # uncomment this later
 #glutWireSphere(1.,50,50)

 343

 glPopMatrix()
 glFlush()
 glutSwapBuffers()

The first new concept is found in the following code:

do the matrix multiplication to rotate the octahedron
glMultMatrixf(aff)

While a discourse on matrix algebra is a bit beyond the realm of this text (for the
moment), it is sufficient to say that here the proper mathematics is done for the affine
transformation (rotation) of the vertices of the octahedron.

The second new concept and the remainder of the function deals with the proper
drawing or rendering of the octahedron using glBegin(GL_TRIANGLE_FAN). If you
have ever seen a collapsible hand-fan, then you have an idea of how this statement
works. We use the points (vertices) stored in the vv[] array to draw connected
triangles. Think of the octahedron as existing in two halves, a top and a bottom. Each
half is drawn or rendered by connecting a series of four triangles in such a way so that a
pyramid is formed. One pyramid points “upward” and one pyramid points “downward”.
Placing the two pyramids of triangle fans together, base to base, then forms the
octahedron.

 The nice color blending is accomplished by changing the color of each vertex
and issuing a glShadeModel(GL_SMOOTH) command in the def init(): function
(as in this program) or in the def main(): function. The vertices are accessed
individually by using a statement such as glVertex3fv(vv[4]). Notice the “v” on the
end of the glVertex3fv command. This stands for “vector”, which in this situation20 is
a list of numbers, i.e. the x, y, and z values in each line of the list we stored in vv[].
The vv[4] simply points to the 4th set of ordered triples in the list or the 4th vertex. You
absolutely MUST think about this set of statements in order to make sense of them.
Why and how is the octahedron generated? What happens if you change the order of
the vertices? Using triangle fans is a great way to build custom solid objects, but you
must think about how the geometry fits together in order to create the object you
visualize in you mind.

 The mouse motion is achieved, partially, by the next two functions.

def idle():
 chaptrack()
 glutPostRedisplay()

def mousemotion(x,y):
 global mouseX
 global mouseY

mouseX = x

20 In physics, a vector is a quantity having both magnitude and direction. In the context of
computer science and other mathematical disciplines, a vector is considered to be a single
dimensional array or list of values. These concepts are related.

 344

 mouseY = y

In the def idle(): function, the program calls def chaptrack(): and the updates
the display whenever it is not handling some other task. The def mousemotion():
function continually monitors the (x, y) position of the mouse pointer within the graphics
window. The def mousemotion(x, y): callback function is defined by the
glutPassiveMotionFunc(mousemotion) statement in def main(). The REAL
magic, though is contained in def chaptrack():

Here is the mysterious rotation function in homage
to Glenn Chappell

def chaptrack():
 global aff
 global mouseX
 global mouseY
 global wd
 global ht
 dx = (mouseX-wd/2)/256.0
 dy = (mouseY-ht/2)/256.0
 glMatrixMode(GL_TEXTURE)
 glPushMatrix()
 glLoadIdentity()
 glRotatef(dx,0,1.0,0.0)
 glRotatef(dy,1.0,0.0,0.0)
 glMultMatrixf(aff)
 aff = glGetFloatv(GL_TEXTURE_MATRIX)
 glPopMatrix()

 It is my understanding that this function took considerable effort to create and I
can understand why! My hat is off to Glenn Chappell, George Francis, Stuart Levy, and
their colleagues for figuring this out. It is best not to meddle in the affairs of such
wizards, to paraphrase Tolkien, so you are at your own peril if you try to modify this
function! There are a lot of mysterious calculations taking place here in the form of
numerous matrix manipulations! This function works very well. Use it. I will make one
small comment, though. Notice the 256.0 denominator in the dx and dy statements.
Try running this program using 256 rather than 256.0 and you will get a great lesson on
why it is important to use the correct variable type (floating point rather than integer) for
certain calculations. By the way, what is the purpose of 256.0? Change this value to a
larger and/or smaller value and see what happens! You may be wondering why the
GL_TEXTURE_MATRIX is involved in this routine? OpenGL has several sets of matrices
it uses to display objects and scenes. One is the GL_MODELVIEW matrix and another is
the GL_PROJECTION matrix. We have used both of these matrices to position and view
an object within our 3D window. GL_TEXTURE is another such matrix and it is used in
chaptrack to avoid disturbing the contents of the other two matrices. Confused? So am
I.

 The def main(): function is similar to the main() functions we have used in
previous programs. The pyilliOct.py code can be used as a skeleton for building
much more complicated objects and programs. It should be kept in a safe place for

 345

further reference. Let’s explore chaptrack and building objects from vertices and
triangle fans a bit further!

The German Bell

One of my favorite memories from grade school art was making a so-called German bell
tree ornament by folding colorful construction paper in a precise manner. It is my
understanding that geometry classes, including those in my high school, also participate
in this activity near the holiday season. If you do not know what a German bell looks
like, use a search engine to see if you can locate an image online. I have included a
couple of images of German bells below, but they may be difficult to view properly,
particularly if you are not using a color printer:

 In the following program, you will use the basic structure found in the
pyilliOct.py program, but we will create a German bell by making the additions and
modifications, including lighting, found in the following listing.

pyGermanBell.py...
based on illiOctahedron

#import important GL stuff
from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
import sys

#define some globals
global belltop
global bellbottom
global aff
global wd
global ht
global MouseX
global MouseY
global brake

Light values and coordinates
global ambientLight
global diffuseLight
global specular
global specref
global lightPos

 346

ambientLight = (0.3, 0.3, 0.3, 1.0)
diffuseLight = (0.7, 0.7, 0.7, 0.7)
specular = (1.0, 1.0, 1.0, 1.0)
specref = (1.0, 1.0, 1.0, 1.0)
lightPos = (20.0, -20.0, 20.0, 1.0)

define the vertex points of the bell top
in geometric order (important for looping)
belltop = [(0.0,1.0,0.0),
 (-.75,-.25,0.0),
 (-.475,0.0,.475),
 (0.0,-.25,.75),
 (.475,0.0,.475),
 (.75, -.25, 0.0),
 (.475,0.0,-.475),
 (0.0,-.25,-.75),
 (-.475, 0.0, -.475),
 (-.75, -.25, 0.0)]

define the bell bottom vertex points
in geometric order (important!)
bellbottom = [(0.0, -.50, 0.0),
 (-.75,-.25,0.0),
 (-.475,0.0,.475),
 (0.0,-.25,.75),
 (.475,0.0,.475),
 (.75, -.25, 0.0),
 (.475,0.0,-.475),
 (0.0,-.25,-.75),
 (-.475, 0.0, -.475),
 (-.75, -.25, 0.0)]

#define the affine identity matrix
aff = (1.0,0.0,0.0,0.0,
 0.0,1.0,0.0,0.0,
 0.0,0.0,1.0,0.0,
 0.0,0.0,0.0,1.0)

#initial window and mouse settings
wd = 800
ht = 800
MouseX = wd/2.0
MouseY = ht/2.0

rotation speed
brake = 1024.0

#The usual display routine
def display():
 global lightPos

 347

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

 glPushMatrix()
 glLoadIdentity()

 glMultMatrixf(aff)

 glLightfv(GL_LIGHT0, GL_POSITION, lightPos)

 #draw the top of the bell
 glBegin(GL_TRIANGLE_FAN)

 # Use a loop to select the vertices
 for v in range(10):
 # change color every other vertex
 # by using even numbers
 if v/2. <> int(v/2.):
 glColor3f(0.0,1.0,0.0)
 else:
 glColor3f(1.0,0.0,0.0)

 glVertex3fv(belltop[v])
 glEnd()

 #draw the bottom of the bell
 glBegin(GL_TRIANGLE_FAN)

 # loop through the vertices
 for v in range(10):

 # alternate colors every even number
 if v/2. <> int(v/2.):
 glColor3f(0.0,1.0,0.0)
 else:
 glColor3f(1.0,0.0,0.0)

 glVertex3fv(bellbottom[v])
 glEnd()

 glPopMatrix()

 glutSwapBuffers()

#keyboard stuff
def keyboard(key, x, y):
 if key == chr(27) or key == 'q':
 sys.exit(0)
 glutPostRedisplay()

#if we change the screen dimensions
def reshape(width, height):

 348

 global wd
 global ht
 global lightPos

 glClearColor(0.0, 0.0, 0.0, 0.0)
 if height == 0:
 height = 1
 wd = width
 ht = height
 glViewport(0,0,wd,ht)
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 gluPerspective(40.,1.,1.,40.)

 gluLookAt(0,0,4,0,0,0,0,1,0)

 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

def chaptrack():
 global MouseX
 global MouseY
 global wd
 global ht
 global aff

 dx = (MouseX-wd/2)/brake
 dy = (MouseY-ht/2)/brake
 glMatrixMode(GL_MODELVIEW)
 glPushMatrix()
 glLoadIdentity()

 glRotatef(dx,0,1.0,0.0)
 glRotatef(dy,1.0,0.0,0.0)

 glMultMatrixf(aff)

 #this line is different from the C
 #version. Python handles it a bit
 #differently... was a pain to figure out!
 aff = glGetFloatv(GL_MODELVIEW_MATRIX)
 glPopMatrix()

#traditional idle
def idle():
 chaptrack()
 glutPostRedisplay()

#ditto traditional mousemotion
def mousemotion(x,y):

 349

 global MouseX
 global MouseY
 MouseX = x
 MouseY = y

def setup():
 glShadeModel(GL_SMOOTH)
 glEnable(GL_DEPTH_TEST)

 glEnable(GL_LIGHTING)

 glLightfv(GL_LIGHT0, GL_AMBIENT, ambientLight)
 glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuseLight)
 glLightfv(GL_LIGHT0, GL_SPECULAR, specular)
 glEnable(GL_LIGHT0)
 glEnable(GL_COLOR_MATERIAL)
 glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE)
 glMaterialfv(GL_FRONT, GL_SPECULAR, specref)
 glMateriali(GL_FRONT, GL_SHININESS, 128)

def motion(x, y):
do some stuff here
when you click on a mouse button
not using it now

#Traditional main subroutine
def main() :
 global wd
 global ht

 glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE)
 glutInitWindowPosition(50, 50)
 glutInitWindowSize(wd, ht)
 glutInit(sys.argv)
 glutCreateWindow("German Bell... ")
 glutKeyboardFunc(keyboard)
 glutReshapeFunc(reshape)
 glutDisplayFunc(display)

 # another interactive mouse function
 # glutMotionFunc(motion)

 glutIdleFunc(idle)
 glutPassiveMotionFunc(mousemotion)

 setup()
 glutMainLoop()

main()

#End Program

 350

 If everything is working properly, you should see something like figure German
Bell with the ability to rotate the bell in real-time as in the pyilliOct.py program.

 German Bell

Exercises

1) Experiment with these programs! Make certain you save the original program lists

(assuming they work correctly!) and then begin to explore by changing colors,
vertices, etc. Can you create a more complex object? Try it! There are many
different parameters for glBegin() other than GL_POINTS, GL_LINES, and
GL_TRIANGLE_FAN. These include GL_LINE_LOOP, GL_LINE_STRIP,
GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_QUADS, GL_QUAD_STRIP, and
GL_POLYGON. Research glBegin and see what you can find out about these
paramters. You can build amazingly complex shapes and objects using glBegin!
At this point in your journey you have the skills to create original works and ideas.
Now is your chance! Write a program using these new concepts with
pyilliOct.py, pyGermanBell.py, or pyilliTorus.py as models!

 If you feel as thought the bell rotation is too slow or uneven, you can change the

value of the brake variable to a smaller value. Also, we have not used the lines:

import psyco
psyco.full()

in either of the programs in this section. You might try adding these lines (assuming
psyco is installed on your system) and see if that makes a difference.

 351

For those of you with a mathematical or geometric bent, how do you think the
vertices of the German Bell were derived? Can you think of other objects you might
create using mathematics/geometry?

2) The chaptrack mouse rotation is very smooth and elegant. However, your mouse

also has buttons. Is there a way to use these buttons interactively? Certainly! We
can modify any of the RTICA programs (or any program for that matter) to allow the
left and right mouse buttons to control clockwise and anticlockwise rotations. My
suggestion is that you reload the pyilliOct.py program and make the following
changes. First, add a couple of global variables to the beginning of the program to
store the rotation values:

 # rotation globals
 global rotclock
 global rotanticlock

 rotclock = 0
 rotanticlock = 0

 Then make the following changes to the chaptrack() function:

 def chaptrack():
 global MouseX
 global MouseY
 global wd
 global ht

 # mouse button rotation globals
 global rotclock
 global rotanticlock

 dx = (MouseX-wd/2)/256.0
 dy = (MouseY-ht/2)/256.0
 glMatrixMode(GL_TEXTURE)
 glPushMatrix()
 glLoadIdentity()

 # rotation using left/right mouse buttons
 glRotatef(rotclock, 0.0, 0.0, 1.0)
 glRotatef(rotanticlock, 0.0, 0.0, 1.0)

 glRotatef(dx,0,1.0,0.0)
 glRotatef(dy,1.0,0.0,0.0)
 global aff
 glMultMatrixf(aff)
 aff = glGetFloatv(GL_TEXTURE_MATRIX)
 glPopMatrix()

 After the chaptrack() modifications, add the following function to your program.
 There are a couple of complex conditional statements that are too long to fit on one
 line. As before, you should type them on a single line in your programming editor.

 352

 def mouse(button ,state, x, y):
 global rotclock
 global rotanticlock

 if button == GLUT_LEFT_BUTTON and state == GLUT_DOWN:
 rotanticlock = 1.0
 rotclock = 0.0
 if glutGetModifiers() == GLUT_ACTIVE_SHIFT and button ==
 GLUT_LEFT_BUTTON and state == GLUT_DOWN:
 rotanticlock = 5.0
 rotclock = 0.0
 if button == GLUT_LEFT_BUTTON and state == GLUT_UP:
 rotanticlock = 0.0

 if button == GLUT_RIGHT_BUTTON and state == GLUT_DOWN:
 rotanticlock = 0.0
 rotclock = -1.0
 if glutGetModifiers() == GLUT_ACTIVE_SHIFT and button ==
 GLUT_RIGHT_BUTTON and state == GLUT_DOWN:
 rotanticlock = 0.0
 rotclock = -5.0
 if button == GLUT_RIGHT_BUTTON and state == GLUT_UP:
 rotclock = 0.0

 And finally, add the following line to your def main() function:

 glutMouseFunc(mouse)

 If all went well, you should be able to run the pyilliOct.py program and not only
 rotate the octahedron in space, but also hold down either the left or right mouse
 buttons and have the octahedron rotate clockwise or anticlockwise about the z-
 axis.21 Now hold down the shift key and press either mouse button. What do you
 see? This is a decent example of how we can further interact with a program using
 the mouse. Many mice (mouses?) have a middle or third button. You can also
 program this button. Perhaps you can research the third button and figure out a
 method for moving into and away from an object without using the arrow keys? You
 may need to use the glutGetModifiers() statement to incorporate the Shift, Ctrl,
 or Alt keys in addition to the third or middle mouse button.

 Remember this exercise when you create more complex models later in the text.
 You may wish to include a full set of mouse interactions with the programs you write.
 If you recall the pySkel.py program early in the text, you may wish to write a NEW
 pySkel.py program the automatically includes several options for interaction with
 both the keyboard and the mouse.

21 The z-axis comes out of the monitor straight at you!

 353

illiTorus

 One of my favorite RTICA programs is the illiTorus. The C version of this
program is much more complex and has many more features, but C is a compiled
language and the resulting program executes very quickly with smooth animation.
Python is an interpreted language and runs an order of magnitude more slowly (at least),
so the Python translation is not quite as complex. Here is the Python listing:

pyilliTorus.py
Credit to George K. Francis for the excellent original program

from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
from math import *
import sys

import psyco
psyco.full()

define some mathematical functions here for
later use in the program. This is NEAT STUFF!
def C(u): return cos(u*0.01745)
def S(u): return sin(u*0.01745)

global wd
global ht
global mouseX
global mouseY
global lux
global lu
global pwr
global aff

lux =(0.3, 0.5, 0.8)
lu = [1,0,0] # this should not be necessary
pwr = 10.

aff = [1.0, 0.0, 0.0, 0.0,
 0.0, 1.0, 0.0, 0.0,
 0.0, 0.0, 1.0, 0.0,
 0.0, 0.0, 0.0, 1.0]

def drawvert(th,ta):
 global lu; global pwr

 # parametric sphere equations
 # for spherical lighting model
 n0= C(th)*C(ta)
 n1= S(th)*C(ta)
 n2= S(ta)

 354

 nn=(n0,n1,n2)
 lmb = nn[0]*lu[0]+nn[1]*lu[1]+nn[2]*lu[2]
 lmb = min(max(lmb, 0.0), 1.0) #clamp
 spec=min(1., 1. - pwr + pwr*lmb)
 dog = (th- 10.)/(346.-10.)
 cat = (ta- 10.)/(346.-10.)
 rr = dog*lmb*1.5
 gg = (.25 + abs(cat-.5))*lmb*1.5
 bb = (1-cat)*lmb*1.5
 glColor3f(max(rr,spec), max(gg,spec), max(bb,spec))

 # torus!
 glVertex3f(C(th)+.5*n0, S(th)+.5*n1, .5*n2)

draw the torus from the mathematical
description in drawvert
def drawtor():
 for th in range(0 ,348,15):
 glBegin(GL_TRIANGLE_STRIP)
 for ta in range (0,348, 15):
 drawvert(th,ta); drawvert(th+8,ta)
 glEnd()

calculate the lighting effects
def calculite(aff):
 global lu
 for ii in range(3):
 lu[ii]= 0
 for jj in range(3):
 lu[ii]+=aff[ii][jj]*lux[jj]

#assign initial window and mouse settings
wd = 600
ht = 600
mouseX = wd/2
mouseY = ht/2

brake = 128.0

def display():
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()
 glMultMatrixf(aff)
 calculite(aff)
 drawtor()
 glutSwapBuffers()

#typical keyboard callback
def keyboard(key, x, y):
 if key == chr(27) or key == 'q':

 355

 sys.exit(0)
 glutPostRedisplay()

#adjust to resizing of the window
def reshape(width, height):
 global wd
 global ht
 glClearColor(0.0, 0.0, 0.0, 0.0)
 if height == 0:
 height = 1
 wd = width
 ht = height
 glViewport(0,0,wd,ht)
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()
 if wd<=ht:
 glOrtho(-2.0,2.0,-2.0*ht/wd,2.0*ht/wd,-2.0,2.0)
 else:
 glOrtho(-2.0*wd/ht,2.0*wd/ht,-2.0,2.0,-2.0,2.0)
 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

#Note that we must declare the globals again
def chaptrack():
 global mouseX
 global mouseY
 global wd
 global ht
 global aff
 dx = (mouseX-wd/2)/brake
 dy = (mouseY-ht/2)/brake
 glMatrixMode(GL_TEXTURE)
 glPushMatrix()
 glLoadIdentity()
 glRotatef(dx,0,1.0,0.0)
 glRotatef(dy,1.0,0.0,0.0)
 glMultMatrixf(aff)
 aff = glGetFloatv(GL_TEXTURE_MATRIX)
 glPopMatrix()

#traditional idle
def idle():
 chaptrack()
 glutPostRedisplay()

#ditto traditional mousemotion
def mousemotion(x,y):
 global mouseX
 global mouseY
 mouseX = x
 mouseY = y

 356

def init():
 glEnable(GL_DEPTH_TEST)
 glShadeModel(GL_SMOOTH)

#Traditional main subroutine
def main() :
 global wd
 global ht
 glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE)
 glutInitWindowPosition(50, 50)
 glutInitWindowSize(wd, ht)
 glutInit()
 glutCreateWindow("illiTorus")
 glutKeyboardFunc(keyboard)
 glutDisplayFunc(display)
 glutIdleFunc(idle)
 glutReshapeFunc(reshape)
 glutPassiveMotionFunc(mousemotion)

 init()
 glutMainLoop()

main()

End Program

 This is a very ambitious program. Much of the program, particularly the lighting
effects and the drawing of the torus, involve many complex calculations. The reason for
the custom lighting is that the OpenGL lighting model is adequate for most purposes, but
it is sometimes difficult to get perfect lighting, particularly using the chaptrack motion
function. The light tends to rotate as the object rotates, making “spot” lighting very
difficult if not impossible. To fix this problem, Professor Francis created his own lighting
routines using mathematics… neat, huh?

 Drawing the torus involves the use of 3D parametric equations, similar to the 2D
parametric equations we worked with earlier in the text. The Python program displays
the resulting surface using ribbons rather than points or a solid surface. Feel free to
change this behavior if you wish. Where and how would you make such changes? The
original C program uses a solid surface rather than ribbons. Why do you think we might
prefer to use ribbons in Python rather than render a solid surface?

 If everything works properly, you should see the following graphics screen:

 357

 illiTorus

 As in previous programs, moving the mouse pointer will cause the “donut” or
torus to rotate. How do you create a torus? In the “real” world, take an elastic sheet of
paper and roll it into a tube. Then connect the ends of the tube and you have a torus. In
a computer program, it takes a bit more effort!

 There are several new concepts addressed in this program. One interesting
concept is found at the beginning of the program:

define some mathematical functions here for
later use in the program. This is NEAT STUFF!
def C(u): return cos(u*0.01745)
def S(u): return sin(u*0.01745)

 These lines of code define the new functions C(u) and S(u), which are
abbreviated versions of cos() and sin(). Technically, you do not have to define such
new functions, but using abbreviations for complicated expressions or functions may
make your programming task a bit easier.

 The drawvert function listing is next:

def drawvert(th,ta):
 global lu; global pwr

 358

 # parametric sphere equations
 # for spherical lighting model
 n0= C(th)*C(ta)
 n1= S(th)*C(ta)
 n2= S(ta)

 # these are the magic lighting calculations
 nn=(n0,n1,n2)
 lmb = nn[0]*lu[0]+nn[1]*lu[1]+nn[2]*lu[2]
 lmb = min(max(lmb, 0.0), 1.0) #clamp
 spec=min(1., 1. - pwr + pwr*lmb)
 dog = (th- 10.)/(346.-10.)
 cat = (ta- 10.)/(346.-10.)
 rr = dog*lmb*1.5
 gg = (.25 + abs(cat-.5))*lmb*1.5
 bb = (1-cat)*lmb*1.5
 glColor3f(max(rr,spec), max(gg,spec), max(bb,spec))

 # torus!
 glVertex3f(C(th)+.5*n0, S(th)+.5*n1, .5*n2)

 In this function, the torus and lighting effects are combined through the
parametric sphere equations. The parametric sphere equations are standard and can
be found in any decent differential geometry or mathematical computer graphics text.
You can also find parametric equations online for most 3D mathematical curves and
surfaces. The sphere is deformed into a torus in the following lines of code.

 # torus!
 glVertex3f(C(th)+.5*n0, S(th)+.5*n1, .5*n2)

The torus is actually plotted and the lighting effects are rendered by the following two
functions:

draw the torus from the mathematical
description in drawvert
def drawtor():
 for th in range(0 ,348,15):
 glBegin(GL_TRIANGLE_STRIP)
 for ta in range (0,348, 15):
 drawvert(th,ta); drawvert(th+8,ta)
 glEnd()

calculate the lighting effects
def calculite(aff):
 global lu
 for ii in range(3):
 lu[ii]= 0
 for jj in range(3):
 lu[ii]+=aff[ii][jj]*lux[jj]

 359

 If you remember the 2D parametric equations chapter, we generate parametric
equations by manipulating each variable, such as x, y, and z (here n0, n1, and n2),
independently of each other. You will notice the for th in range(0, 348, 15):
and the for ta in range(0, 348, 15): loop statements. We use these loops to
perform a 3D radar sweep while adjusting the distance of the plotted points from the
origin through the three parametric equations. There is MUCH wizardry taking place in
this program! One of the best methods of learning how the code works is by
experimenting, so let’s take a few small steps in that direction! Remember to SAVE this
program before modifying it and then re-save under a new name in the event that we
destroy the program’s functionality.

Exercises

 Let’s see if we can modify the illiTorus program by making it a bit simpler so that
we may be able to more easily display other mathematical surfaces. It is diificult to
create some of the more famous parametric surfaces in mathematics using the original
program, simply because any modification to the spherical parametric equations plays
havoc with the lighting. If we remove Professor Francis’ lighting effects we may have
and easier time creating new surfaces. However, we may pay a penalty with much
poorer lighting effects. Let’s see! Take the pyilliTorus.py program and change it to
the following listing:

pyNewTorus.py
Credit to George K. Francis for the excellent original program

from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
from math import *
import sys

import psyco
psyco.full()

define some new trig functions here for
later use in the program. This is NEAT STUFF!
def C(u): return cos(u*0.01745)
def S(u): return sin(u*0.01745)

global wd
global ht
global mouseX
global mouseY
global aff
global nrange
nrange = 2.0

aff = [1.0, 0.0, 0.0, 0.0,
 0.0, 1.0, 0.0, 0.0,

 360

 0.0, 0.0, 1.0, 0.0,
 0.0, 0.0, 0.0, 1.0]

def drawvert(th,ta):

 # parametric sphere equations
 n0= C(th)*C(ta)
 n1= S(th)*C(ta)
 n2= S(ta)

 # new color scheme!
 glColor3f(S(th),C(ta),S(th*ta))

 # torus!
 glVertex3f(C(th)+.5*n0, S(th)+.5*n1, .5*n2)

 # sphere
 #glVertex3f(n0, n1, n2)

def drawtor():
 for th in range(0 ,348,15):
 glBegin(GL_TRIANGLE_STRIP)
 for ta in range (0,348, 15):
 drawvert(th,ta); drawvert(th+8,ta)
 glEnd()

#assign initial window and mouse settings
wd = 600
ht = 600
mouseX = wd/2
mouseY = ht/2

brake = 128.0

def display():
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()
 glMultMatrixf(aff)
 drawtor()
 glutSwapBuffers()

#typical keyboard callback
def keyboard(key, x, y):
 if key == chr(27) or key == 'q':
 sys.exit(0)
 glutPostRedisplay()

#adjust to resizing of the window
def reshape(width, height):
 global wd
 global ht

 361

 glClearColor(0.0, 0.0, 0.0, 0.0)
 if height == 0:
 height = 1
 wd = width
 ht = height
 glViewport(0,0,wd,ht)
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()
 if wd<=ht:
 glOrtho(-nrange,nrange,-nrange*ht/wd,nrange*ht/wd,-
nrange,nrange)
 else:
 glOrtho(-nrange*wd/ht,nrange*wd/ht,-nrange,nrange,-
nrange,nrange)
 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

#Note that we must declare the globals again
def chaptrack():
 global mouseX
 global mouseY
 global wd
 global ht
 global aff
 dx = (mouseX-wd/2)/brake
 dy = (mouseY-ht/2)/brake
 glMatrixMode(GL_TEXTURE)
 glPushMatrix()
 glLoadIdentity()
 glRotatef(dx,0,1.0,0.0)
 glRotatef(dy,1.0,0.0,0.0)
 glMultMatrixf(aff)
 aff = glGetFloatv(GL_TEXTURE_MATRIX)
 glPopMatrix()

#traditional idle
def idle():
 chaptrack()
 glutPostRedisplay()

#ditto traditional mousemotion
def mousemotion(x,y):
 global mouseX
 global mouseY
 mouseX = x
 mouseY = y

def init():
 glEnable(GL_DEPTH_TEST)
 glShadeModel(GL_SMOOTH)

#Traditional main subroutine

 362

def main() :
 global wd
 global ht
 glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE)
 glutInitWindowPosition(50, 50)
 glutInitWindowSize(wd, ht)
 glutInit()
 glutCreateWindow("illiTorus")
 glutKeyboardFunc(keyboard)
 glutDisplayFunc(display)
 glutIdleFunc(idle)
 glutReshapeFunc(reshape)
 glutPassiveMotionFunc(mousemotion)

 init()
 glutMainLoop()

main()

 Torus Without Lighting

 The new torus program does not have the sophisticated lighting of Professor
Francis’ program, but the code is much simpler and you can see the torus without a
problem… even if the coloration is, well, interesting. With the lighting calculations
removed, we may find that the program will actually run a bit faster than before.

 See if you can display a sphere instead of a torus! The modification in the def
drawvert(): function is simple. Leave the parametric sphere statements as they are
and make the following changes:

 # torus!

 363

 #glVertex3f(C(th)+.5*n0, S(th)+.5*n1, .5*n2)

 # Display the parametric equations “as is”
 glVertex3f(n0, n1, n2)

 Notice that the glVertex3f statement that plots the torus has been commented
and we’ve added a new glVertex3f line. This should display a single sphere (why?).
Uncomment both glVertex3f statements for an interesting effect!

 Sphere

 Another surface you might try is the Crosscap. It looks a bit like a sphere that
has been pinched. Here is the modified def drawvert(): … first comment both the
sphere and torus equations and leave the remainder of the program untouched. Then
add the Crosscap code as shown below:

def drawvert(th,ta):

 # parametric sphere equations
 #n0= C(th)*C(ta)
 #n1= S(th)*C(ta)
 #n2= S(ta)

 # Crosscap
 n0= C(th)*S(2*ta)
 n1= S(th)*S(2*ta)
 n2= C(ta)*C(ta) - C(th)*C(th)*S(ta)*S(ta)

 glColor3f(S(th),C(ta),S(th*ta))

 # torus!
 #glVertex3f(C(th)+.5*n0, S(th)+.5*n1, .5*n2)

 364

 # sphere
 glVertex3f(n0, n1, n2)

 Here is the Crosscap:

 Crosscap

 We’ll try a few other surfaces. In each new instance, comment out the previous
set of parametric equations and add the new code immediately below the “old”
equations. Now try a Klein Bottle!

 # Klein Bottle!
 n0 = C(th)*(1 + S(ta)*C(th/2) - (S(2*ta)*S(th/2))/2)
 n1 = S(th)*(1 + S(ta)*C(th/2) - (S(2*ta)*S(th/2))/2)
 n2 = S(th/2)*S(ta) + (C(th/2)*S(2*ta))/2

 The Klein bottle (named for the great mathematician/geometer Felix Klein) is a
4D surface. Yes, I said 4D. We are actually looking at a 3D projection of an object from
the 4th dimension. A Klein bottle has no interior… every point in a Klein bottle is
considered to be on the outside! You should do some research on the Klein bottle. It is
an interesting surface and is related to the Mobius strip.22

22 The Mobius strip is a surface that has only 1 side! Look it up…

 365

 Klein Bottle

Similar to the Crosscap is Steiner’s Roman Surface:

 # Steiner's Roman Surface
 n0 = C(ta)*C(ta)*S(2*th)
 n1 = S(th)*S(2*ta)
 n2 = C(th)*S(2*ta)

 Steiner’s Roman Surface

And here is another torus!

 366

 # Another torus
 n0 = (1 + 0.5*C(ta))*C(th)
 n1 = (1 + 0.5*C(ta))*S(th)
 n2 = 0.5*S(ta)

 Torus Again!

 This new torus is exactly like the original torus (without lighting), isn’t it? That
must mean that the above equations are equivalent to the original equations in the
pyilliTorus.py program! Are you surprised?

How about a very nice figure 8?

 # figure 8... beautiful!
 n0 = C(th)*(1 + S(ta)*C(th) - S(2*ta)*S(th)/2)
 n1 = S(th)*(1 + S(ta)*C(th) - S(2*ta)*S(th)/2)
 n2 = S(th)*S(ta) + C(th)*S(2*ta)/2

 In each of these new surfaces, you may find that the nrange variable needs to
be modified in order to show the entire surface in a pleasing manner. If the surface is
too small, decrease nrange. If the surface is too large, increase nrange.

 367

 Figure 8

 The last parametric surface we’ll visit formally is one that was discovered by
Professor Francis and named the Etruscan Venus. You may need to change nrange to
3.0 to see the entire figure (don’t forget to change it back to 2.0 if you wish to return to
the other surfaces):

 # George's Etruscan Venus
 n0 = 1.2*C(2*th)*C(ta) + S(ta)*C(th)
 n1 = 1.2*S(2*th)*C(ta) - S(ta)*S(th)
 n2 = 2*C(ta)

 Etruscan Venus

 368

 The Etruscan Venus is related to Steiner’s Roman Surface. It was named after
the Etruscans, an ancient civilization predating the Romans. The Venus is derived from
Venus de Milo, the famous armless Greek statue depicting the goddess of love.

 In the event that you are having problems displaying these surfaces, here is a
complete listing of the def drawvert(th, ta): function, showing how to use comments to
display only the surface we wish to view. In this listing, we are viewing Venus!

def drawvert(th,ta):

 # parametric sphere equations
 #n0= C(th)*C(ta)
 #n1= S(th)*C(ta)
 #n2= S(ta)

 # Crosscap
 #n0= C(th)*S(2*ta)
 #n1= S(th)*S(2*ta)
 #n2= C(ta)*C(ta) - C(th)*C(th)*S(ta)*S(ta)

 # Klein Bottle!
 #n0 = C(th)*(1 + S(ta)*C(th/2) - (S(2*ta)*S(th/2))/2)
 #n1 = S(th)*(1 + S(ta)*C(th/2) - (S(2*ta)*S(th/2))/2)
 #n2 = S(th/2)*S(ta) + (C(th/2)*S(2*ta))/2

 # Steiner's Roman Surface
 #n0 = C(ta)*C(ta)*S(2*th)
 #n1 = S(th)*S(2*ta)
 #n2 = C(th)*S(2*ta)

 # Another torus
 #n0 = (1 + 0.5*C(ta))*C(th)
 #n1 = (1 + 0.5*C(ta))*S(th)
 #n2 = 0.5*S(ta)

 # George's Etruscan Venus
 n0 = 1.2*C(2*th)*C(ta) + S(ta)*C(th)
 n1 = 1.2*S(2*th)*C(ta) - S(ta)*S(th)
 n2 = 2*C(ta)

 # figure 8... beautiful!
 #n0 = C(th)*(1 + S(ta)*C(th) - S(2*ta)*S(th)/2)
 #n1 = S(th)*(1 + S(ta)*C(th) - S(2*ta)*S(th)/2)
 #n2 = S(th)*S(ta) + C(th)*S(2*ta)/2

 glColor3f(S(th),C(ta),S(th*ta))

 # torus!
 #glVertex3f(C(th)+.5*n0, S(th)+.5*n1, .5*n2)

 # sphere

 369

 glVertex3f(n0, n1, n2)

 Now what? If you don’t like the striped or ribbon nature of the surfaces, you can
try to modify the code so that the surfaces are solid. Where might you try this? You can
also try to modify the parametric equations to see if you can create a new surface. If you
can and the surface is interesting enough, perhaps it will be named after you! Perhaps
not.

 Here is a real challenge: Why not add a popup menu to the program so the user
can easily select among the surfaces? You could even programmatically change the
value of nrange in the popup menu or in the code of the surface you wish to view.
Does adding the psyco code speed up these surface calculations and animations?

 In the next chapter we are going to learn how to speed up our animations by
using display lists. If we have a large number of points or very complex objects, we can’t
easily animate the scene simply because it takes a long time to draw each point. This is
very unhandy since we need to have a method for complex visualizations. The display
list is an excellent method. It is related to arrays and will allow us to store an object or a
collection of objects (such as points) in memory. This storage will result in much faster
animation.

 370

Chapter 10 Animation and Display Lists

 Most chemistry classes, even at the high school level, will discuss the concept of
the electron orbital. An electron orbital is a location in space where an electron is likely
to be found. Orbitals take shapes such as spheres, lobes, and much more exotic forms
as the electron energy level and number of orbitals increases. The shapes of the
orbitals are solutions to very complex mathematical equations in quantum theory23. In
this chapter, I would like to begin by presenting a program that depicts electron orbitals
as a cloud of points (or point cloud), which is somewhat similar to the electron cloud
model of the atom. If we plot many thousands of points and then attempt to rotate them
all, each point position must be recalculated and plotted. That would take considerable
computation time. Is there a better method? Certainly! We can store the points in an
OpenGL display list. Display lists are very efficient memory routines that will group our
points together as a unit and allow for fast animation.

Electron Orbitals

pyPointCloud.py
uses a display list

from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
from numpy import *
from numpy import *
from random import *
import sys

global ptcloud
global s2
global p2
global axrng

axrng = 5.0

p2 = 0
s2 = 0

global aff
aff = (1.0,0.0,0.0,0.0,
 0.0,1.0,0.0,0.0,
 0.0,0.0,1.0,0.0,
 0.0,0.0,0.0,1.0)

global wd
wd = 400

23 Quantum theory is one of the most robust and most difficult theories in physics and chemistry.
It requires an intense mathematical background to understand and even then, loses none of its
exotic and difficult aspects. Quantum theory is virtually impossible to describe or explain without
the mathematics… and no, I don’t understand quantum theory.

 371

global ht
ht = 400
global MouseX
MouseX = wd/2.0
global MouseY
MouseY = ht/2.0

def display():
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
 glMatrixMode(GL_MODELVIEW)
 glPushMatrix()
 glLoadIdentity()
 glMultMatrixf(aff)

 glColor3f(1.0, 0.0, 1.0)
 #glutWireSphere(1.,50,50)
 glCallList(ptcloud)

 glPopMatrix()
 glFlush()
 glutSwapBuffers()

def keyboard(key, x, y):
 global s2
 global p2
 if key == "s":
 s2 = 1
 if key == "z":
 s2 = 0
 if key == "p":
 p2 = 1
 if key == "o":
 p2 = 0
 if key == chr(27) or key == 'q':
 sys.exit(0)
 lists()
 glutPostRedisplay()

def reshape(width, height):
 global wd
 global ht
 glClearColor(0.0, 0.0, 0.0, 0.0)
 if height == 0:
 height = 1
 wd = width
 ht = height
 glViewport(0,0,wd,ht)
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 if wd<=ht:

 372

 glOrtho(-axrng,axrng,-axrng*ht/wd,axrng*ht/wd,-
axrng,axrng)
 else:
 glOrtho(-axrng*wd/ht,axrng*wd/ht,-axrng,axrng,-
axrng,axrng)

 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

def motion():
 return 0

def chaptrack():
 global MouseX
 global MouseY
 global wd
 global ht
 dx = (MouseX-wd/2.0)/128
 dy = (MouseY-ht/2.0)/128
 glMatrixMode(GL_MODELVIEW)
 glPushMatrix()
 glLoadIdentity()
 glRotatef(dx,0,1.0,0.0)
 glRotatef(dy,1.0,0.0,0.0)
 global aff
 glMultMatrixf(aff)
 aff = glGetFloatv(GL_MODELVIEW_MATRIX)
 glPopMatrix()

def lists():
 global ptcloud
 ptcloud = glGenLists(1)
 glNewList(ptcloud, GL_COMPILE)
 glPointSize(2.0)
 glBegin(GL_POINTS)
 for n in range(25000):
 u = random()*6.28-3.14
 v = random()*6.28-3.14

 x = cos(u)*cos(v)
 y = sin(u)*cos(v)
 z = sin(v)
 glColor3f(0.30,0.0,1.0)
 glVertex3f(x,y,z)

 if s2 == 1:
 x = cos(u)*cos(v)
 y = sin(u)*cos(v)
 z = sin(v)
 glColor3f(0.80,0.40,0.60)
 glVertex3f(2*x,2*y,2*z)
 glColor3f(0.90,0.10,0.25)

 373

 glVertex3f(4*x,4*y,4*z)

 if p2 == 1:
 x = cos(u)*sin(2*v)
 y = sin(u)*sin(2*v)
 z = sin(v)
 glColor3f(0.50,0.70,0.30)
 glVertex3f(x,y,3.5*z)
 glVertex3f(x,3.5*z,y)
 glVertex3f(3.5*z,x,y)

 glEnd()
 glEndList()

def idle():
 chaptrack()
 glutPostRedisplay()

def mousemotion(x,y):
 global MouseX
 MouseX = x
 global MouseY
 MouseY = y

def main() :
 global wd
 global ht
 glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE)
 glutInitWindowPosition(50, 50)
 glutInitWindowSize(wd, ht)
 glutInit([])
 glutCreateWindow("illiOct")
 glutKeyboardFunc(keyboard)
 glutReshapeFunc(reshape)
 glutDisplayFunc(display)
 glutMotionFunc(motion)
 glutIdleFunc(idle)
 glutPassiveMotionFunc(mousemotion)
 glEnable(GL_DEPTH_TEST)
 lists()

 glutMainLoop()

main()

 If the program runs correctly the program begins with a small blue point cloud
sphere in the center of the screen. This represents the 1s electron orbital. Pressing the
“s” key will add the 2s and 3s orbitals, which are larger concentric spheres surrounding
the first orbital (be patient, the program takes time to calculate the points in the display
list). The p orbitals can be displayed by pressing the “p” key. When all orbitals are
toggled, you will see something like the following:

 374

 Orbitals

 The orbital program is interactive both by mouse and keyboard. Can you figure
out how to hide the orbitals by looking at the code? Those of you with an interest in
chemistry might try to add additional orbitals? Let’s move on to a more difficult point
cloud animation.

 375

The Quaternion Julia Set

 The quaternion Julia set is a rather beautiful 4D version of the 2D Julia set.
There is no 3D version of the Juia set due to the nature of complex numbers. Since we
do not have 4D displays (yet?), we are limited to rendering a 3D projection of the 4D
Julia set analogous to the 3D projection of the 4D Klein bottle. Actually, since our
display screen is 2D, we are really viewing a 2D projection of the 3D projection of the 4D
mathematical object. The program listing is a Python adaptation from “Hyperspace
Iterations: Distance estimation and higher dimensional fractals” by Yumei Dang, Louis
H. Kauffman, and Daniel Sandin (2002 World Scientific Publishing):

pyQuat.py

from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
from math import *
from random import *
import sys

we need some help with computational speed!
import psyco
psyco.full()

#define some globals
global vv
global aff
global wd
global ht
global MouseX
global MouseY

global count

variable to store the display list
global ptcloud

#define the vertex points
vv = []

#define the affine identity matrix
aff = (1.0,0.0,0.0,0.0,
 0.0,1.0,0.0,0.0,
 0.0,0.0,1.0,0.0,
 0.0,0.0,0.0,1.0)

#initial window and mouse settings
wd = 800
ht = 800
MouseX = wd/2

 376

MouseY = ht/2

calculate the quaternion fractal
def calcit():
 global vv
 global count
 count = 1
 s = 1
 pi = 3.141592653588
 a = 0.1
 b = -0.75
 theta = 20.

 theta = 2*pi*theta/360.

 x = a
 y = b*cos(theta)
 z = b*sin(theta)

 # change the values of k and l to change the shape
 k = 0.2
 l = 0.7
 phi = 20.

 phi = 2*pi*phi/360.

 a = k
 b = l*cos(phi)
 c = l*sin(phi)

 # 20000 points to store
 while count < 20000:
 x = x + a
 y = y + b
 z = z + c

 r = sqrt(x*x + y*y + z*z)
 x = x/r
 y = y/r
 z = z/r
 r = sqrt(r)
 m = sqrt(y*y + z*z)
 e = sqrt(.5*(1+x))
 g = sqrt(.5*(1-x))

 if m == 0:
 x = r
 y = 0
 z = 0
 else:
 x = r*e
 y = r*y*g/m

 377

 z = r*z*g/m

 count = count + 1
 if random() > 0.5:
 s = -s
 x = s*x
 y = s*y
 z = s*z
 if count > 30:
 vv = vv + [(x,y,z)]
 vv = vv + [(-x,-y,-z)]

 dolist()

def dolist():
 global ptcloud

 # start storing the display list in ptcloud
 ptcloud = glGenLists(1)

 # compile the ptcloud points
 glNewList(ptcloud, GL_COMPILE)
 glPointSize(3.0)
 glBegin(GL_POINTS)
 for n in range(1,2*count-60,3):
 glColor3f(sin(n),cos(n),sin(n)*cos(n))
 glVertex3fv(vv[n])
 glEnd()
 glEndList()

def display():
 global vv
 global count

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
 glMatrixMode(GL_MODELVIEW)
 glPushMatrix()
 glLoadIdentity()
 glMultMatrixf(aff)

 glCallList(ptcloud)

 glPopMatrix()
 glFlush()
 glutSwapBuffers()

def keyboard(key, x, y):
 if key == chr(27) or key == 'q':
 sys.exit(0)
 glutPostRedisplay()

#if we change the screen dimensions

 378

def reshape(width, height):
 global wd
 global ht
 glClearColor(0.0, 0.0, 0.0, 0.0)
 if height == 0:
 height = 1
 wd = width
 ht = height
 glViewport(0,0,wd,ht)
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 if wd<=ht:
 glOrtho(-2.0,2.0,-2.0*ht/wd,2.0*ht/wd,-2.0,2.0)
 else:
 glOrtho(-2.0*wd/ht,2.0*wd/ht,-2.0,2.0,-2.0,2.0)

 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

def chaptrack():
 global MouseX
 global MouseY
 global wd
 global ht
 global aff
 dx = (MouseX-wd/2)/128.0
 dy = (MouseY-ht/2)/128.0
 glMatrixMode(GL_TEXTURE)
 glPushMatrix()
 glLoadIdentity()
 glRotatef(dx,0,1.0,0.0)
 glRotatef(dy,1.0,0.0,0.0)
 glMultMatrixf(aff)
 aff = glGetFloatv(GL_TEXTURE_MATRIX)
 glPopMatrix()

def idle():
 chaptrack()
 glutPostRedisplay()

def mousemotion(x,y):
 global MouseX
 global MouseY
 MouseX = x
 MouseY = y

def init():
 glEnable(GL_DEPTH_TEST)
 glShadeModel(GL_SMOOTH)

def main() :

 379

 global wd
 global ht
 glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE)
 glutInitWindowPosition(50, 50)
 glutInitWindowSize(wd, ht)
 glutInit([])
 glutCreateWindow("illiOct")
 glutKeyboardFunc(keyboard)
 glutReshapeFunc(reshape)
 glutDisplayFunc(display)
 glutIdleFunc(idle)
 glutPassiveMotionFunc(mousemotion)

 init()

 # calculate the fractal
 calcit()

 glutMainLoop()

main()

End program

 It is my recommendation that in the debugging phase of the program you use
2000 points rather than 20000 points. Python takes a couple of minutes to calculate
20000 points with the rather complicated equations used in the def calcite():
function, so please be patient! If the program runs correctly, you will see something
similar to the following:

 380

 Quaternion Julia Set

 You will have to trust me when I tell you that if you don’t use display lists, the
animation in this program is ridiculously slow! Truthfully, Python is not the ideal
language for rendering quaternion fractals. C or another compiled language would be
much better.

 381

Alternate Quaternion Julia Set and Mandelbrot Set

 Several years ago I decided to make an attempt to write my own quaternion
fractal program. Since I am not a math professor, I had to rely on a “brute strength and
ignorance” approach and I think that the resulting program turned our rather well (in my
humble opinion) despite my lack of a comprehensive mathematical education. I wrote
the original program in C using Professor Francis’ illiSkel.c (illiTorus) framework. Here is
the Python adaptation:

pyRandQuat.py
Dr. Blank's version
of the Quaternion Julia Set
with a Mandelbrot option

from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
from math import *
from random import *
import sys

we need some help with computational speed!
import psyco
psyco.full()

#define some globals
global vv
global aff
global wd
global ht
global MouseX
global MouseY

for the complex arithmetic calculations
global cr
global ci
global cj
global ck
global wk
global count
global mand
global iter
global maxpoints
global quatpoints

initial values for complex parameters
change these for a different set
cr = -0.2
ci = 0.8
cj = 0.0

 382

ck = 0.0
wk = 0.0

start out in the Julia Set... mand = 0
mand = 1 is the Mandelbrot set
mand = 0
iter = 10

one million random points to test
be patient!
maxpoints = 1000000
quatpoints = 0

variable to store the display list
global ptcloud

#define the vertex points
vv = []

#define the affine identity matrix
aff = (1.0,0.0,0.0,0.0,
 0.0,1.0,0.0,0.0,
 0.0,0.0,1.0,0.0,
 0.0,0.0,0.0,1.0)

#initial window and mouse settings
wd = 600
ht = 600
MouseX = wd/2
MouseY = ht/2

calculate the quaternion fractal
def calcit():
 global vv
 global count
 global quatpoints
 vv = []
 count = 0
 n = 0
 quatpoints = 0

 while count < maxpoints:
 count = count + 1
 x = 4*random() - 2
 y = 4*random() - 2
 z = 4*random() - 2

 leng = calcleng(x, y, z)

 # the point is constrained, plot it!
 if leng < 4:
 quatpoints = quatpoints + 1

 383

 vv = vv + [(x,y,z)]

 dolist()

def calcleng(x, y, z):
 n = 0
 w = wk
 if mand == 1:
 kr = x
 ki = y
 kj = z
 kk = 0
 else:
 kr = cr
 ki = ci
 kj = cj
 kk = ck

 while n < iter:
 n = n + 1

 # quaternion multiplication
 temp = x+x
 x = x*x - y*y - z*z - w*w + kr
 y = temp*y + ki
 z = temp*z + kj
 w = temp*w + kk

 # a form of the distance formula
 dist = x*x + y*y + z*z + w*w

 # if the point escapes to infinity, don't store it!
 if dist > 4:
 break

 return dist

def dolist():
 global ptcloud

 # start storing the display list in ptcloud
 ptcloud = glGenLists(1)

 # compile the ptcloud points
 glNewList(ptcloud, GL_COMPILE)
 glPointSize(2.0)
 glBegin(GL_POINTS)
 for n in range(quatpoints):
 glColor3f(sin(n),cos(n),4*sin(n)*cos(n))
 glVertex3fv(vv[n])
 glEnd()
 glEndList()

 384

def display():
 global vv
 global count

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
 glMatrixMode(GL_MODELVIEW)
 glPushMatrix()
 glLoadIdentity()
 glMultMatrixf(aff)

 glCallList(ptcloud)

 glPopMatrix()
 glFlush()
 glutSwapBuffers()

def keyboard(key, x, y):
 global mand

 # toggle between the Julia and Mandelbrot sets
 if key == 'm':
 mand = 1
 calcit()
 if key == 'j':
 mand = 0
 calcit()
 if key == chr(27) or key == 'q':
 sys.exit(0)
 glutPostRedisplay()

#if we change the screen dimensions
def reshape(width, height):
 global wd
 global ht
 glClearColor(0.0, 0.0, 0.0, 0.0)
 if height == 0:
 height = 1
 wd = width
 ht = height
 glViewport(0,0,wd,ht)
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 if wd<=ht:
 glOrtho(-2.0,2.0,-2.0*ht/wd,2.0*ht/wd,-2.0,2.0)
 else:
 glOrtho(-2.0*wd/ht,2.0*wd/ht,-2.0,2.0,-2.0,2.0)

 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

 385

#does nothing at this point
#def motion():
return 0

def chaptrack():
 global MouseX
 global MouseY
 global wd
 global ht
 global aff
 dx = (MouseX-wd/2)/128.0
 dy = (MouseY-ht/2)/128.0
 glMatrixMode(GL_TEXTURE)
 glPushMatrix()
 glLoadIdentity()
 glRotatef(dx,0,1.0,0.0)
 glRotatef(dy,1.0,0.0,0.0)
 glMultMatrixf(aff)
 aff = glGetFloatv(GL_TEXTURE_MATRIX)
 glPopMatrix()

def idle():
 chaptrack()
 glutPostRedisplay()

def mousemotion(x,y):
 global MouseX
 global MouseY
 MouseX = x
 MouseY = y

def init():
 glEnable(GL_DEPTH_TEST)
 glShadeModel(GL_SMOOTH)

def main() :
 global wd
 global ht
 glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE)
 glutInitWindowPosition(50, 50)
 glutInitWindowSize(wd, ht)
 glutInit([])
 glutCreateWindow("Quaternion Fractals!")
 glutKeyboardFunc(keyboard)
 glutReshapeFunc(reshape)
 glutDisplayFunc(display)
 #glutMotionFunc(motion)
 #glutMouseFunc(mouse)
 glutIdleFunc(idle)
 glutPassiveMotionFunc(mousemotion)

 init()

 386

 # calculate the fractal
 calcit()

 glutMainLoop()

main()

 Here is an image of the Quaternion Julia set fractal from the preceding program:

 Quaternion Julia Set

 And here is the Quaternion Mandelbrot Set from the same program:

 387

 Quaternion Mandelbrot Set

 You can toggle back and forth between the Mandelbrot and Julia Sets by using
the ‘m’ and ‘j’ keys respectively. If you are not the patient type, then you can set the
maxpoints variable to 100000 instead of 1 million. The C version of this program
calculates billions of points in the time it takes the Python version to work through 1
million point candidates. This was a fun program to research and create!

 Based on the visual representations, what is the difference between the first
quaternion fractal program and the one just presented? For an exploratory exercise, try
changing the values in this section:

initial values for complex parameters
change these for a different set
cr = -0.2
ci = 0.8
cj = 0.0
ck = 0.0
wk = 0.0

 I would recommend reducing the value of the maxpoints variable to about
100000 while experimenting so that you do not have to wait too long for the object to be
rendered. If you see something interesting, you can then increase maxpoints to
enhance the detail.

 The remainder of the text will present several miscellaneous programs that may
be of interest.

 388

Chapter 11 Miscellaneous Programs

 The miscellaneous programs are going to be presented without explanation. I
chose these programs, some original and some from other sources, to illustrate various
concepts in OpenGL/GLUT that may be of interest to you. My intent is to have you
research the topics that you find useful or that pique your imagination. At this point, you
should be well on your way to independent learning! The first program is entitled
pyRandomWalk.py.

The Random Walk

pyRandomWalk.py

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from numpy import *
from random import *
import sys

global width
global height
global nRange

Initial values
width = 500
height = 500
nRange = 1.0

def init():
 glClearColor(0.0, 0.0, 0.0, 0.0)

def plotFunc():
 glClear(GL_COLOR_BUFFER_BIT)
 total = 0
 c = 0

 # 5 random walk trials
 while c < 5:
 glColor(random(), random(), random())
 c += 1
 n = 0
 x = 0
 y = 0

 # up to 100000 points per walk
 while n < 100000:
 n += 1

 # choose random directions
 xw = randint(-1,1)/250.0

 389

 yw = randint(-1,1)/250.0
 glBegin(GL_POINTS)
 glVertex2f(x, y)
 glEnd()
 glFlush()

 # add the random direction to x and y
 x += xw
 y += yw

 # distance formula… if we ever get farther
 # away than 1 unit, stop and then start again
 # using a new color

 if sqrt(x**2 + y**2) >= 1:
 total += n
 break
 print "rounds", c, "ave", total/c

def Reshape(w, h):

 # To insure we don't have a zero height
 if h==0:
 h = 1

 # Fill the entire graphics window!
 glViewport(0, 0, w, h)

 # Set the projection matrix... our "view"
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 # Set the aspect ratio of the plot so that it
 # Always looks "OK" and never distorted.
 if w <= h:
 gluOrtho2D(-nRange, nRange, -nRange*h/w, nRange*h/w)
 else:
 gluOrtho2D(-nRange*w/h, nRange*w/h, -nRange, nRange)

 # Set the matrix for the object we are drawing
 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

def keyboard(key, x, y):
 # Allows us to quit by pressing 'Esc' or 'q'
 if key == chr(27):
 sys.exit()
 if key == "q":
 sys.exit()

def main():
 global width

 390

 global height

 glutInit(sys.argv)
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE)
 glutInitWindowPosition(0,0)
 glutInitWindowSize(width,height)
 glutCreateWindow("Random Walk")
 glutReshapeFunc(Reshape)
 glutDisplayFunc(plotFunc)
 glutKeyboardFunc(keyboard)

 init()
 glutMainLoop()

main()

 Here is a display image of a typical random walk:

 After researching random walk, can you extend this program into 3D space?
Can you also add the chaptrack rotation function?

 391

The 3D Sierpinski Sponge

 You recall the Sierpinski gasket? Here is a program to create a 3D Sierpinski
sponge. A mathematical sponge has no volume.

pySierpinski3D.py

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from random import *
import sys

def init():
 glClearColor(0.0, 0.0, 0.0, 0.0) #Black background
 glColor3f(1.0, 0.0, 0.5)
 #Uncomment the glColor line below and comment
 #the glColor above for random colors
 #Where would you put the line below IF you
 #Want each dot to have a random color?

 #glColor3f(random(),random(),random())
 gluPerspective(45,1.0,1.0,40.0)

def chaos():
 glClear(GL_COLOR_BUFFER_BIT)

 # You can start at ANY random point
 x = random()
 y = random()
 z = random()

 for n in range(0,50000):
 n+=1
 vertx = randint(1,4)
 if vertx == 1:
 x = x/2.0
 y = (y+2.0)/2.0
 z = (z+2.0)/2.0
 if vertx == 2:
 x = (x-2.0)/2.0
 y = (y-2.0)/2.0
 z = (z+2.0)/2.0
 if vertx == 3:
 x = (x+2.0)/2.0
 y = (y-2.0)/2.0
 z = (z-2.0)/2.0
 if vertx == 4:
 x = (x+2.0)/2.0
 y = (y-2.0)/2.0

 392

 z = (z+2.0)/2.0

 if n > 30:
 glBegin(GL_POINTS)
 glVertex3f(x,y,z-8)
 glEnd()
 glFlush()

def main():
 glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE)
 glutInitWindowPosition(50, 50)
 glutInitWindowSize(800, 800)
 glutInit(sys.argv)
 glutCreateWindow("Sierpinski")
 glutDisplayFunc(chaos)
 init()
 glutMainLoop()

main()

 Here is the Sierpinski sponge:

 As presented, the 3D Sierpinski program is missing a keyboard exit routine. The
Sierpinski sponge does not rotate. Can you fix the program and add some features to
make it interactive? How about using chaptrack and a display list?

 393

Rendering Teapots

 The following program is not an original program, but I don’t remember and can’t
easily find the author and/or the source. It is presented here as an illustration of the
various colors and metallic textures available for GLUT and the use of successive
glTranslate commands to position the teapots. One important note: the
renderTeapot statements are LONG and each should be typed on ONE line if
possible. If you can’t type them on one line, Python allows you to press return and
continue on the next line. The right parenthesis “)” acts as the endline character. There
is also a timing function using the time library. Timing programs can be useful when
you are trying to determine the performance or how fast a program executes.

pyTeapots.py
This program demonstrates lots of material properties.
A single light source illuminates the objects.

import sys
import time

from OpenGL.GLUT import *
from OpenGL.GL import *
from OpenGL.GLU import *

Initialize depth buffer, projection matrix,
light source, and lighting
model. Do not specify a material property here.

def init():
 ambient = [0.0, 0.0, 0.0, 1.0]
 diffuse = [1.0, 1.0, 1.0, 1.0]
 specular = [1.0, 1.0, 1.0, 1.0]
 position = [0.0, 3.0, 3.0, 0.0]

 lmodel_ambient = [0.2, 0.2, 0.2, 1.0]
 local_view = [0.0]

 glLightfv(GL_LIGHT0, GL_AMBIENT, ambient)
 glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse)
 glLightfv(GL_LIGHT0, GL_POSITION, position)
 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodel_ambient)
 glLightModelfv(GL_LIGHT_MODEL_LOCAL_VIEWER, local_view)

 glFrontFace(GL_CW)
 glEnable(GL_LIGHTING)
 glEnable(GL_LIGHT0)
 glEnable(GL_AUTO_NORMAL)
 glEnable(GL_NORMALIZE)
 glEnable(GL_DEPTH_TEST)

 # be efficient--make teapot display list

 394

 global teapotList
 teapotList = glGenLists(1)
 glNewList (teapotList, GL_COMPILE)
 glutSolidTeapot(1.0)
 glEndList ()

Move object into position. Use 3rd through 12th
parameters to specify the material property. Draw a teapot.

def renderTeapot(x, y, ambr, ambg, ambb, difr, difg,
 difb, specr, specg, specb, shine):
 mat = [0, 0, 0, 0]

 glPushMatrix()
 glTranslatef(x, y, 0.0)
 mat[0] = ambr; mat[1] = ambg; mat[2] = ambb; mat[3] = 1.0
 glMaterialfv(GL_FRONT, GL_AMBIENT, mat)
 mat[0] = difr; mat[1] = difg; mat[2] = difb
 glMaterialfv(GL_FRONT, GL_DIFFUSE, mat)
 mat[0] = specr; mat[1] = specg; mat[2] = specb
 glMaterialfv(GL_FRONT, GL_SPECULAR, mat)
 glMaterialf(GL_FRONT, GL_SHININESS, shine * 128.0)
 glCallList(teapotList)
 glPopMatrix()

First column: emerald, jade, obsidian, pearl, ruby, turquoise
2nd column: brass, bronze, chrome, copper, gold, silver
3rd column: black, cyan, green, red, white, yellow plastic
4th column: black, cyan, green, red, white, yellow rubber
NOTE: Each of the renderTeapot statements are LONG
and should be on the same line!

def display():
 start = time.clock()
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
 renderTeapot(2.0, 17.0, 0.0215, 0.1745, 0.0215,
 0.07568, 0.61424, 0.07568, 0.633, 0.727811, 0.633, 0.6)
 renderTeapot(2.0, 14.0, 0.135, 0.2225, 0.1575,
 0.54, 0.89, 0.63, 0.316228, 0.316228, 0.316228, 0.1)
 renderTeapot(2.0, 11.0, 0.05375, 0.05, 0.06625,
 0.18275, 0.17, 0.22525, 0.332741, 0.328634, 0.346435, 0.3)
 renderTeapot(2.0, 8.0, 0.25, 0.20725, 0.20725,
 1, 0.829, 0.829, 0.296648, 0.296648, 0.296648, 0.088)
 renderTeapot(2.0, 5.0, 0.1745, 0.01175, 0.01175,
 0.61424, 0.04136, 0.04136, 0.727811, 0.626959, 0.626959, 0.6)
 renderTeapot(2.0, 2.0, 0.1, 0.18725, 0.1745,
 0.396, 0.74151, 0.69102, 0.297254, 0.30829, 0.306678, 0.1)
 renderTeapot(6.0, 17.0, 0.329412, 0.223529, 0.027451,
 0.780392, 0.568627, 0.113725, 0.992157, 0.941176, 0.807843,
 0.21794872);
 renderTeapot(6.0, 14.0, 0.2125, 0.1275, 0.054,
 0.714, 0.4284, 0.18144, 0.393548, 0.271906, 0.166721, 0.2)

 395

 renderTeapot(6.0, 11.0, 0.25, 0.25, 0.25,
 0.4, 0.4, 0.4, 0.774597, 0.774597, 0.774597, 0.6)
 renderTeapot(6.0, 8.0, 0.19125, 0.0735, 0.0225,
 0.7038, 0.27048, 0.0828, 0.256777, 0.137622, 0.086014, 0.1)
 renderTeapot(6.0, 5.0, 0.24725, 0.1995, 0.0745,
 0.75164, 0.60648, 0.22648, 0.628281, 0.555802, 0.366065, 0.4)
 renderTeapot(6.0, 2.0, 0.19225, 0.19225, 0.19225,
 0.50754, 0.50754, 0.50754, 0.508273, 0.508273, 0.508273, 0.4)
 renderTeapot(10.0, 17.0, 0.0, 0.0, 0.0, 0.01, 0.01, 0.01,
 0.50, 0.50, 0.50, .25)
 renderTeapot(10.0, 14.0, 0.0, 0.1, 0.06, 0.0, 0.50980392,
 0.50980392,0.50196078, 0.50196078, 0.50196078, .25)
 renderTeapot(10.0, 11.0, 0.0, 0.0, 0.0,
 0.1, 0.35, 0.1, 0.45, 0.55, 0.45, .25);
 renderTeapot(10.0, 8.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0,
 0.7, 0.6, 0.6, .25)
 renderTeapot(10.0, 5.0, 0.0, 0.0, 0.0, 0.55, 0.55, 0.55,
 0.70, 0.70, 0.70, .25)
 renderTeapot(10.0, 2.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.0,
 0.60, 0.60, 0.50, .25)
 renderTeapot(14.0, 17.0, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01,
 0.4, 0.4, 0.4, .078125)
 renderTeapot(14.0, 14.0, 0.0, 0.05, 0.05, 0.4, 0.5, 0.5,
 0.04, 0.7, 0.7, .078125)
 renderTeapot(14.0, 11.0, 0.0, 0.05, 0.0, 0.4, 0.5, 0.4,
 0.04, 0.7, 0.04, .078125)
 renderTeapot(14.0, 8.0, 0.05, 0.0, 0.0, 0.5, 0.4, 0.4,
 0.7, 0.04, 0.04, .078125)
 renderTeapot(14.0, 5.0, 0.05, 0.05, 0.05, 0.5, 0.5, 0.5,
 0.7, 0.7, 0.7, .078125)
 renderTeapot(14.0, 2.0, 0.05, 0.05, 0.0, 0.5, 0.5, 0.4,
 0.7, 0.7, 0.04, .078125)
 glFlush()
 end = time.clock()
 print start, end, end-start

def reshape(w, h):
 glViewport(0, 0, w, h)
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()
 if (w <= h):
 glOrtho(0.0, 16.0, 0.0, 16.0*h/w, -10.0, 10.0)
 else:
 glOrtho(0.0, 16.0*w/h, 0.0, 16.0, -10.0, 10.0)
 glMatrixMode(GL_MODELVIEW)

def keyboard(key, x, y):
 if key == chr(27):
 sys.exit(0)

Main Loop
glutInit(sys.argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutInitWindowSize(500, 600);
glutInitWindowPosition(50,50);

 396

glutCreateWindow(sys.argv[0]);
init();
glutReshapeFunc(reshape)
glutDisplayFunc(display)
glutKeyboardFunc(keyboard)
glutMainLoop()

 Notice that there is no def main(): function. This is not generally a problem
as long as the proper GLUT initialization commands are present. Here is an image of
the output, although the text can’t do justice to the metallic colors.

 Teapots!

 Can you make the teapots rotate as an entire group? Can you make them
rotated individually (hint: glPushMatrix()). Can you make each one rotate
independently from the others? You can look up “mouse picking”24 in GLUT or OpenGL.

24 No, it isn’t the same as pointing and saying “That’s the mouse I want”.

 397

A Midpoint Conjecture

 This is an original program written to help answer the following question: If you
begin with a set of random line segments connected end to end in space and joined in a
loop, what happens if you form a new object by connecting the midpoints of the previous
segments? In other words, over time, what shape will you eventually end up drawing?
My midpoint conjecture is that no matter how crazy the original object, you will always
end up with a circle. My friend George Francis disagrees and conjectures that you will
end up with a single point. He is probably correct; after all, he is a math professor!
Anyway, the program was great fun to write and I hope you enjoy it. By the way, you
can use much of some of the previous programs (illiTorus, etc.) to write this one!

Midpt.py... Stan Blank
An exploration into geometry
January 2005

import important GL stuff
from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *

Might need some math stuff
from math import *
from random import *
import sys

#define some globals
global vv
global aff
global wd
global ht
global MouseX
global MouseY
global flag
global count
global n

for zooming in and out
global zoom
zoom = 0.0

Vertices
n = 500

define the vertex point array
vv = []

#define the affine identity matrix
aff = (1.0,0.0,0.0,0.0,
 0.0,1.0,0.0,0.0,

 398

 0.0,0.0,1.0,0.0,
 0.0,0.0,0.0,1.0)

#initial window and mouse settings
wd = 1000
ht = 1000
MouseX = wd/2
MouseY = ht/2

def calcit():
 # DO need these... first global assignment
 global vv
 global count
 global flag
 global n

 flag = -1
 count = 0

 # Assign n random vertices within
 # a -2 to 2 box on in all 3 axes
 while count <n:
 x = 4*random()-2
 y = 4*random()-2
 z = 4*random()-2

 # Store the x,y,z coordinates in the array
 vv = vv + [[x,y,z]]

 # Keep track of how many vertices there are
 count = count + 1

#The usual display routine
def display():
 #don't need these IF already assigned
 #values as globals... weird
 #global vv
 #global count

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
 glMatrixMode(GL_MODELVIEW)
 glPushMatrix()
 glLoadIdentity()

 glTranslatef(0.0,0.0,zoom)
 # Prep for the rotations
 glMultMatrixf(aff)

 # try glTranslatef here and see what happens
 #glTranslatef(0.0,0.0, zoom)
 glLineWidth(2.0)
 # Draw the 3D polygon from the stored values

 399

 glBegin(GL_LINE_STRIP)
 for n in range(0,count):
 #glColor3f(random(),random(),random())
 glVertex3fv(vv[n])
 glVertex3fv(vv[0])
 glEnd()

 glPopMatrix()
 glFlush()
 glutSwapBuffers()

def midpt():
 #global count
 #global vv

 # Calculate the midpoint of each segment
 # An store this new vertex back in the
 # Original array... this was not easy
 # To figure out!
 x0 = vv[0][0]
 y0 = vv[0][1]
 z0 = vv[0][2]
 for n in range(0,count-1):
 # the next two lines belong on ONE line
 vv[n] = [((vv[n][0] + vv[n+1][0])/2),((vv[n][1] +
vv[n+1][1])/2),((vv[n][2] + vv[n+1][2])/2)]

 # the next two lines belong on ONE line
 vv[count-1] = [((vv[count-1][0]+x0)/2),((vv[count-
1][1]+y0)/2),((vv[count-1][2]+z0)/2)]

 glutPostRedisplay()

#keyboard stuff
def keyboard(key, x, y):
 global flag
 if key == chr(27) or key == 'q':
 sys.exit(0)

 # This starts and stops the animation
 if key == "a":
 flag = -1*flag
 midpt()
 glutPostRedisplay()

if we change the screen dimensions
Everything still looks normal
def reshape(width, height):
 global wd
 global ht
 global zoom

 400

 glClearColor(0.0, 0.0, 0.0, 0.0)
 if height == 0:
 height = 1
 wd = width
 ht = height
 glViewport(0,0,wd,ht)
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 # Since we are rotating and moving about
 # A perspective view is much nicer!
 gluPerspective(45.,1.,.1,400.)

 # Look this up to see what it means!
 gluLookAt(0,0,5.0,
 0,0,0,
 0,1,0)

 #if wd<=ht:
 # glOrtho(-2.0,2.0,-2.0*ht/wd,2.0*ht/wd,-2.0,2.0)
 #else:
 # glOrtho(-2.0*wd/ht,2.0*wd/ht,-2.0,2.0,-2.0,2.0)

 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

#does nothing at this point
def motion(x,y):
 #print x,y
 return 0

def chaptrack():
 global MouseX
 global MouseY
 global wd
 global ht
 global aff
 dx = (MouseX-(wd/2))/164
 dy = (MouseY-(ht/2))/164
 glMatrixMode(GL_TEXTURE)
 glPushMatrix()
 glLoadIdentity()
 glRotatef(dx,0,1.0,0.0)
 glRotatef(dy,1.0,0.0,0.0)
 glMultMatrixf(aff)

 #this line is different from the C
 #version. Python handles it a bit
 #differently... was a pain to figure out!
 aff = glGetFloatv(GL_TEXTURE_MATRIX)
 glPopMatrix()

 401

def idle():
 chaptrack()
 glutPostRedisplay()

 # Whether or not to keep on calculating
 if flag == 1:
 midpt()

def mousemotion(x,y):
 global MouseX
 global MouseY
 MouseX = x
 MouseY = y

def arrowkeys(key, x, y):
 global zoom

 # Zoom in and out
 if key == GLUT_KEY_UP:
 zoom = zoom + .1
 if key == GLUT_KEY_DOWN:
 zoom = zoom - .1

 # Reset back to the original distance
 if key == GLUT_KEY_HOME:
 zoom = 5.0

 glutPostRedisplay()

#Traditional main subroutine
def main() :
 global wd
 global ht
 glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE)
 glutInitWindowPosition(50, 50)
 glutInitWindowSize(wd, ht)
 glutInit(sys.argv)
 glutCreateWindow("Mid-Point Exploration")
 glutKeyboardFunc(keyboard)
 glutReshapeFunc(reshape)
 glutDisplayFunc(display)
 glutMotionFunc(motion)
 glutSpecialFunc(arrowkeys)
 ##glutMouseFunc(mouse)
 glutIdleFunc(idle)
 glutPassiveMotionFunc(mousemotion)
 glEnable(GL_DEPTH_TEST)
 glShadeModel(GL_SMOOTH)
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()
 #glOrtho(-2.0,2.0,-2.0,2.0,-2.0,2.0)
 glMatrixMode(GL_MODELVIEW)

 402

 glLoadIdentity()

 #Could add additional function calls
 calcit()
 ##lists()

 glutMainLoop()
main()

 Press the “a” key to animate. You can rotate the figure while it runs. Be patient
and let the program do its work. So, what do you think? A circle or a point? Of course,
nothing short of a mathematical proof will reveal the truth, but it is fun to do experimental
mathematics on the computer! Again, a program in C would run much faster (and I do
have a C version!). Here is a picture of the initial set of segments:

 Initial Set of Connected Line Segments

And on the next page is an image of the segments after a couple of minutes:

 403

 What will it look like in an hour? A day? The C version allows the user to zoom
in toward the closed curve. The next figure is a much zoomed image from the C version
after a few minutes. Remember that C is MUCH faster than Python! The C program
used 100000 random line segments while the Python program only used 500. Do you
see why I conjecture that you will eventually get a circle?

 404

 Computers and modern graphics cards allow exploration of mathematical
concepts that were unimaginable even a few years ago. A graphic image on a compuer
display is NOT a mathematical proof, but mathematical visualization may help us
understand mathematics and geometry in ways never foreseen just a few decades ago.
Of course, we must be certain that the image is CORRECT!

 405

Fog

 In addition to depth testing, perspective, and rotations, another method for
providing the illusion of 3D space is to use fog. Here is a fantastic program to illustrate
fog effects. This program is not original, but I can’t remember where I got it!

Fog!

import sys, time
from math import *
from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *

viewRotX = 0
viewRotY = 0
viewDistance = 25

def draw():
 glClearColor(0.5, 0.8, 1.0, 0.0)
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
 glEnable(GL_DEPTH_TEST)

 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()
 gluPerspective(50.0, 1.75, 1.0, 100.0)
 glMatrixMode(GL_MODELVIEW)

 glLoadIdentity()

 glTranslatef(0.0, 0.0, -viewDistance)
 glRotatef(viewRotX, 1.0, 0.0, 0.0)
 glRotatef(viewRotY, 0.0, 1.0, 0.0)

 glEnable(GL_FOG)
 glFogi(GL_FOG_MODE, GL_LINEAR)
 glFogfv(GL_FOG_COLOR, [0.5, 0.8, 1, 0])
 glFogf(GL_FOG_START, 5.0)
 glFogf(GL_FOG_END, 40.0)

 defineLight()
 glEnable(GL_LIGHTING)
 global floorMeshDList
 glCallList(floorMeshDList)
 drawTeapot()
 drawPedestal()
 drawBall()
 glDisable(GL_LIGHTING)

 glutSwapBuffers()

 406

def defineLight():
 glEnable(GL_LIGHT0)
 glLightfv(GL_LIGHT0, GL_DIFFUSE, [1, 1, 1, 1])
 glLightfv(GL_LIGHT0, GL_POSITION, [-1, 2, 1])

def drawFloorMesh(columns,rows):
 green = [0, 0.8, 0.1, 1]
 black = [0, 0, 0, 1]
 glMaterialfv(GL_FRONT, GL_AMBIENT, green)
 glMaterialfv(GL_FRONT, GL_DIFFUSE, green)
 glMaterialfv(GL_FRONT, GL_SPECULAR, black)
 glNormal3f(0.0, 1.0, 0.0)
 for j in range(0,rows):
 glBegin(GL_TRIANGLE_STRIP)
 for i in range(0,columns):
 x = ((float(i)) / columns) * 40.0 - 20.0
 z = ((float(j)) / rows) * 40.0 - 20.0
 glVertex3f(x, -2.0, z)
 z = ((float(j)+1) / rows) * 40.0 - 20.0
 glVertex3f(x, -2.0, z)
 glEnd()

def drawTeapot():
 red = [0.8, 0, 0, 1]
 white = [1, 1, 1, 1]
 glMaterialfv(GL_FRONT, GL_AMBIENT, red)
 glMaterialfv(GL_FRONT, GL_DIFFUSE, red)
 glMaterialfv(GL_FRONT, GL_SPECULAR, white)
 glMaterialf(GL_FRONT, GL_SHININESS, 90.0)
 glPushMatrix()
 glTranslatef(2.0, 4.0, -1.0)
 glRotatef(currentTime() * 30.0, 0.0, 1.0, 0.0)
 global teapotDList
 glCallList(teapotDList)
 glPopMatrix()

quadric = None
def drawPedestal():
 global quadric
 grey = [0.6, 0.6, 0.6, 1]
 white = [1, 1, 1, 1]
 if not quadric:
 quadric = gluNewQuadric()
 glMaterialfv(GL_FRONT, GL_AMBIENT, grey)
 glMaterialfv(GL_FRONT, GL_DIFFUSE, grey)
 glMaterialfv(GL_FRONT, GL_SPECULAR, white)
 glMaterialf(GL_FRONT, GL_SHININESS, 30.0)

 407

 glPushMatrix()
 glTranslatef(2.0, -2.0, -1.0)
 glRotatef(-90.0, 1.0, 0.0, 0.0)
 gluCylinder(quadric, 4.0, 4.0, 4.0, 16, 1)
 glTranslatef(0.0, 0.0, 4.0)
 gluDisk(quadric, 0.0, 4.0, 16, 1)
 glPopMatrix()

def drawBall():
 cyan = [0, 1, 1, 1]
 black = [0, 0, 0, 1]
 glMaterialfv(GL_FRONT, GL_AMBIENT, cyan)
 glMaterialfv(GL_FRONT, GL_DIFFUSE, cyan)
 glMaterialfv(GL_FRONT, GL_SPECULAR, black)
 glPushMatrix()
 glTranslatef(-10.0, fabs(sin(currentTime())) * 3.0, -15.0)
 glutSolidSphere(2.0, 16, 8)
 glPopMatrix()

def drawBitmapString(text, font=GLUT_BITMAP_TIMES_ROMAN_24):
 for c in text:
 glutBitmapCharacter(font, ord(c))

startTime = time.time()
def currentTime():
 return time.time() - startTime

def keyboard(key, x, y):
 global viewDistance
 if key == chr(27):
 sys.exit(0)
 elif key == '.':
 viewDistance -= 1
 elif key == ',':
 viewDistance += 1

def specialkey(k, x, y):
 global viewRotX, viewRotY
 if k == GLUT_KEY_LEFT:
 viewRotY += 3
 elif k == GLUT_KEY_RIGHT:
 viewRotY -= 3
 elif k == GLUT_KEY_UP:
 viewRotX += 3
 elif k == GLUT_KEY_DOWN:
 viewRotX -= 3

 408

glutInit([])
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH)
glutInitWindowSize(700,400)
glutCreateWindow(sys.argv[0])
glutDisplayFunc(draw)
glutKeyboardFunc(keyboard)
glutSpecialFunc(specialkey)
glutIdleFunc(glutPostRedisplay)
glEnable(GL_DEPTH_TEST)
glEnable(GL_LIGHTING)
glEnable(GL_LIGHT0)

floorMeshDList = glGenLists(1)
glNewList(floorMeshDList, GL_COMPILE)
drawFloorMesh(32,32)
glEndList()

teapotDList = glGenLists(1)
glNewList(teapotDList, GL_COMPILE)
glutSolidTeapot(2)
glEndList()

glutMainLoop()

 Here is an image from the Fog program on the following page. You can just
make out a ball moving in the background, nearly obscured by the fog. Fog is a very
useful special effect for depicting distance.

 409

PyLorenz

 The C version of this program inspired my students and me to write a program
for the CUBE virtual reality room. You should be somewhat patient as the spheres “do
their thing”, but the end result is interesting. Some of the program statements are
lengthy and span more than one line in the listing below. When you write the program,
make certain that these statements are on a single line or errors will occur. I have made
comments in the program to help guide you.

#PyLorenz.py
#This program illustrates the Lorenz attractor
#in a much different manner
#Feb 24, 2005

#import important GL stuff
from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
from numpy import *
import sys

#run faster!
import psyco
psyco.full()

#define some globals
global aff
global wd
global ht
global MouseX
global MouseY

#Lorenz globals
global dt
global a
global b
global c
global numspheres
global trails
global colors

#For lighting
global whiteLight
global sourceLight
global lightPos

dt = .005
numspheres = 3000
trails = []
colors = []

 410

whiteLight = (0.5, 0.5, 0.5, 1.0)
sourceLight = (0.3, 0.3, 0.3, 1.0)
lightPos = (20.0, 20.0, 20.0, 1.0)

#define the affine identity matrix
#for mouse motion
aff = (1.0,0.0,0.0,0.0,
 0.0,1.0,0.0,0.0,
 0.0,0.0,1.0,0.0,
 0.0,0.0,0.0,1.0)

#initial window and mouse settings
wd = 800
ht = 800
MouseX = wd/2
MouseY = ht/2

#The usual display routine
def display():
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

 glMatrixMode(GL_MODELVIEW)

 glPushMatrix()
 glLoadIdentity()

 glTranslatef(0,0,0)
 glMultMatrixf(aff)

 #draw the Lorenz attractor
 for n in range(0,numspheres/3):
 glColor3ub(colors[n][0],colors[n][1],colors[n][2])

 # each of the a, b, and c statements should
 # be on one line… they are a bit lengthy
 a = (10*trails[n][1] - 10*trails[n][0])*dt +
trails[n][0]
 b = (28*trails[n][0] - trails[n][1] -
trails[n][0]*trails[n][2])*dt + trails[n][1]
 c = (-2.66667*trails[n][2] +
trails[n][0]*trails[n][1])*dt + trails[n][2]

 trails[n] = [a,b,c]

 glPushMatrix()
 glTranslatef(a,b,c-30)
 glutSolidSphere(1.0,10,10)
 glPopMatrix()

 glPopMatrix()
 glutSwapBuffers()

 411

#keyboard stuff
def keyboard(key, x, y):
 if key == chr(27) or key == 'q':
 sys.exit(0)
 glutPostRedisplay()

#if we change the screen dimensions
def reshape(width, height):
 global wd
 global ht
 glClearColor(0.0, 0.0, 0.0, 0.0)
 if height == 0:
 height = 1
 wd = width
 ht = height
 glViewport(0,0,wd,ht)
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 gluPerspective(45.,1.,1.,180.)

 gluLookAt(80,0,0,
 0,0,0,
 0,1,0)

 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()
 glLightfv(GL_LIGHT0, GL_POSITION, lightPos)

def chaptrack():
 global MouseX
 global MouseY
 global wd
 global ht
 global aff

 dx = (MouseX-wd/2)/96
 dy = (MouseY-ht/2)/96
 glMatrixMode(GL_MODELVIEW)
 glPushMatrix()
 glLoadIdentity()

 glRotatef(dx,0,1.0,0.0)
 glRotatef(dy,1.0,0.0,0.0)
 glMultMatrixf(aff)

 #this line is different from the C
 #version. Python handles it a bit
 #differently... was a pain to figure out!
 aff = glGetFloatv(GL_MODELVIEW_MATRIX)
 glPopMatrix()

 412

def idle():
 chaptrack()
 glutPostRedisplay()

def mousemotion(x,y):
 global MouseX
 global MouseY
 MouseX = x
 MouseY = y

def setup():
 #setup the spheres
 global trails
 global colors

 # z position of first sphere
 zpos = 23.990

 #Places the spheres NEARLY on top of each other
 for n in range(0,numspheres,3):
 zpos+=.0001
 trails = trails + [[8.0,8.0,zpos]]

 #Give the spheres a range of colors
 for n in range(0,numspheres,3):
 if n <= numspheres/10.:
 red = 255
 green = 0
 blue = 0
 elif n > numspheres/10. and n <= numspheres/5.:
 red = 255
 green = 128
 blue = 0
 elif n > numspheres/5. and n <= numspheres/3.3333:
 red = 255
 green = 255
 blue = 0
 elif n > numspheres/3.3333 and n <= numspheres/2.5:
 red = 128
 green = 255
 blue = 0
 elif n > numspheres/2.5 and n <= numspheres/2.:
 red = 0
 green = 255
 blue =0
 elif n > numspheres/2. and n <= numspheres/1.66667:
 red = 0
 green = 255
 blue = 128
 # the next line is one line

 413

 elif n > numspheres/1.66667 and n <=
numspheres/1.428571:
 red = 0
 green = 128
 blue = 255
 elif n > numspheres/1.428571 and n <= numspheres/1.25:
 red = 0
 green = 0
 blue = 255
 elif n > numspheres/1.25 and n <= numspheres/1.11111:
 red = 128
 green = 0
 blue = 255
 else:
 red = 255
 green = 0
 blue = 255

 colors = colors + [[red,green,blue]]

 glShadeModel(GL_SMOOTH)
 glEnable(GL_DEPTH_TEST)
 glEnable(GL_LIGHTING)
 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, whiteLight)
 glLightfv(GL_LIGHT0, GL_DIFFUSE, sourceLight)
 glEnable(GL_LIGHT0)
 glEnable(GL_COLOR_MATERIAL)
 glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE)

def main() :
 global wd
 global ht
 glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE)
 glutInitWindowPosition(50, 50)
 glutInitWindowSize(wd, ht)
 glutInit()
 glutCreateWindow("Lorenz Attractor")
 glutKeyboardFunc(keyboard)
 glutReshapeFunc(reshape)
 glutDisplayFunc(display)
 glutMotionFunc(motion)
 glutIdleFunc(idle)
 glutPassiveMotionFunc(mousemotion)

 setup()
 glutMainLoop()

main()

 This was an enjoyable program to write and it was very rewarding to have the
computer gurus at the Beckman Institute decide that it was worthy of being included in

 414

their CUBE Syzygy distribution software. PyLorenz, in its CUBE/CAVE form is still being
used by REU Math 198 students as a model to write VR software for the CAVE and
CUBE. Here is an image of the program after it has been running for several minutes.
Of course, the C/C++ version runs MUCH faster.

 PyLorenz

 415

Nate Robins and Multiview

 Nate Robins is responsible, as far as I know, for porting Mark Kilgard’s GLUT
toolkit to Microsoft Windows. Here is an OLD program of his that demonstrates
windowing and multiple viewports. It is fascinating to watch. Can you improve the
code?

multiview.py
Nate Robins, 1997
shows how to use multiple viewports

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from sys import *

some object oriented stuff
class struct : pass
GBL = struct() # globals

GBL.torus_list = 0
GBL.spin_x = 0.0
GBL.spin_y = 0.0

GBL.width, GBL.height = 0, 0
GBL.old_x, GBL.old_y = 0, 0

def text(s) :
 # the next statement should be on one line!
 map(glutBitmapCharacter,(GLUT_BITMAP_HELVETICA_18,)*len(s),
map(ord, s))

def lists() :
 gold_Ka = (0.24725, 0.1995, 0.0745, 1.0)
 gold_Kd = (0.75164, 0.60648, 0.22648, 1.0)
 gold_Ks = (0.628281, 0.555802, 0.366065, 1.0)
 gold_Ke = 41.2
 silver_Ka = (0.05, 0.05, 0.05, 1.0)
 silver_Kd = (0.4, 0.4, 0.4, 1.0)
 silver_Ks = (0.7, 0.7, 0.7, 1.0)
 silver_Ke = 12.0

 GBL.torus_list = glGenLists(1)
 glNewList(GBL.torus_list, GL_COMPILE)
 glMaterialfv(GL_FRONT, GL_AMBIENT, gold_Ka)
 glMaterialfv(GL_FRONT, GL_DIFFUSE, gold_Kd)
 glMaterialfv(GL_FRONT, GL_SPECULAR, gold_Ks)
 glMaterialf(GL_FRONT, GL_SHININESS, gold_Ke)
 glMaterialfv(GL_BACK, GL_AMBIENT, silver_Ka)
 glMaterialfv(GL_BACK, GL_DIFFUSE, silver_Kd)

 416

 glMaterialfv(GL_BACK, GL_SPECULAR, silver_Ks)
 glMaterialf(GL_BACK, GL_SHININESS, silver_Ke)
 #glutWireTorus(0.3, 0.5, 16, 32)
 glutWireTeapot(0.5)
 glEndList()

def init() :
 light_pos = (1.0, 1.0, 1.0, 0.0)
 glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE)
 glLightfv(GL_LIGHT0, GL_POSITION, light_pos)
 glEnable(GL_LIGHTING)
 glEnable(GL_LIGHT0)
 glEnable(GL_DEPTH_TEST)
 glDisable(GL_CULL_FACE)

def reshape(width, height) :
 glClearColor(0.0, 0.0, 0.0, 0.0)

def projection(width, height, perspective) :
 ratio = float(width)/height

 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()
 if (perspective) :
 gluPerspective(60, ratio, 1, 256)
 else :
 glOrtho(-ratio, ratio, -ratio, ratio, 1, 256)
 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()
 gluLookAt(0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0)

def bottom_left() :
 glViewport(0, 0, GBL.width, GBL.height)
 glScissor(0, 0, GBL.width, GBL.height)

def bottom_right() :
 glViewport(GBL.width, 0, GBL.width, GBL.height)
 glScissor(GBL.width, 0, GBL.width, GBL.height)

def top_left() :
 glViewport(0, GBL.height, GBL.width, GBL.height)
 glScissor(0, GBL.height, GBL.width, GBL.height)

def top_right() :
 glViewport(GBL.width, GBL.height, GBL.width, GBL.height)
 glScissor(GBL.width, GBL.height, GBL.width, GBL.height)

def front() :
 projection(GBL.width, GBL.height, 0)
 glRotatef(GBL.spin_y, 1.0, 0.0, 0.0)
 glRotatef(GBL.spin_x, 0.0, 1.0, 0.0)

 417

def back() :
 projection(GBL.width, GBL.height, 0)
 glRotatef(180.0, 0.0, 1.0, 0.0)
 glRotatef(GBL.spin_y, 1.0, 0.0, 0.0)
 glRotatef(GBL.spin_x, 0.0, 1.0, 0.0)

def right() :
 projection(GBL.width, GBL.height, 0)
 glRotatef(90.0, 0.0, 1.0, 0.0)
 glRotatef(GBL.spin_y, 1.0, 0.0, 0.0)
 glRotatef(GBL.spin_x, 0.0, 1.0, 0.0)

def left() :
 projection(GBL.width, GBL.height, 0)
 glRotatef(-90.0, 0.0, 1.0, 0.0)
 glRotatef(GBL.spin_y, 1.0, 0.0, 0.0)
 glRotatef(GBL.spin_x, 0.0, 1.0, 0.0)

def top() :
 projection(GBL.width, GBL.height, 0)
 glRotatef(90.0, 1.0, 0.0, 0.0)
 glRotatef(GBL.spin_y, 1.0, 0.0, 0.0)
 glRotatef(GBL.spin_x, 0.0, 1.0, 0.0)

def bottom() :
 projection(GBL.width, GBL.height, 0)
 glRotatef(-90.0, 1.0, 0.0, 0.0)
 glRotatef(GBL.spin_y, 1.0, 0.0, 0.0)
 glRotatef(GBL.spin_x, 0.0, 1.0, 0.0)

def perspective() :
 projection(GBL.width, GBL.height, 1)
 glRotatef(30.0, 0.0, 1.0, 0.0)
 glRotatef(20.0, 1.0, 0.0, 0.0)
 glRotatef(GBL.spin_y, 1.0, 0.0, 0.0)
 glRotatef(GBL.spin_x, 0.0, 1.0, 0.0)

def display() :
 GBL.width = glutGet(GLUT_WINDOW_WIDTH)
 GBL.height = glutGet(GLUT_WINDOW_HEIGHT)

 glViewport(0, 0, GBL.width, GBL.height)
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()
 gluOrtho2D(0, GBL.width, 0, GBL.height)
 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

 glDisable(GL_LIGHTING)
 glColor3ub(255, 255, 255)
 glBegin(GL_LINES)

 418

 glVertex2i(GBL.width/2,0)
 glVertex2i(GBL.width/2,GBL.height)
 glVertex2i(0,GBL.height/2)
 glVertex2i(GBL.width,GBL.height/2)
 glEnd()

 glRasterPos2i(5, 5)
 text("Front")
 glRasterPos2i(GBL.width/2+5, 5)
 text("Right")
 glRasterPos2i(5, GBL.height/2+5)
 text("Top")
 glRasterPos2i(GBL.width/2+5, GBL.height/2+5)
 text("Perspective")

 glEnable(GL_LIGHTING)

 GBL.width = (GBL.width+1)/2
 GBL.height = (GBL.height+1)/2

 glEnable(GL_SCISSOR_TEST)

 bottom_left()
 front()
 glCallList(GBL.torus_list)

 bottom_right()
 right()
 glCallList(GBL.torus_list)

 top_left()
 top()
 glCallList(GBL.torus_list)

 top_right()
 perspective()
 glCallList(GBL.torus_list)

 glDisable(GL_SCISSOR_TEST)

 glutSwapBuffers()

def keyboard(key, x, y) :
 if key == chr(27) or key == 'q' :
 sys.exit(0)
 glutPostRedisplay()

def mouse(button, state, x, y) :
 GBL.old_x = x
 GBL.old_y = y
 glutPostRedisplay()

 419

def motion(x, y) :
 GBL.spin_x = x - GBL.old_x
 GBL.spin_y = y - GBL.old_y
 glutPostRedisplay()

def main() :
 glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE)
 glutInitWindowPosition(50, 50)
 glutInitWindowSize(512, 512)
 glutInit()
 glutCreateWindow("Multiple Viewports")
 glutKeyboardFunc(keyboard)
 glutReshapeFunc(reshape)
 glutDisplayFunc(display)
 glutMotionFunc(motion)
 glutMouseFunc(mouse)

 init()
 lists()

 glutMainLoop()

main()

 Even though this is an OLD program in terms of OpenGL/GLUT, it is still a nice
example of using independent viewports. If you’ve entered the code correctly, you
should see the image on the following page. You can click in any of the small viewports
and manipulate ALL of the teapots at the same time. If you perform a websearch for
Nate Robins, you may be able to find some of his other fine GLUT program examples,
some of which have been ported to Python. It would be a great programming project to
choose one of his more complex GLUT examples and translate the code from C to
python.

 Early in the text, I mentioned the http://nehe.gamedev.net website. You should
take the time to visit this site and examine the OpenGL/GLUT code examples found
there. Many of the programs have been translated to Python, but several have not. This
is a great source of information and can serve as a springboard for future projects.

 420

 Nate Robins Multiview

 421

Chapter 12 VPython

 Where do you want to go from here and what do you want to accomplish? There
are other computer languages to learn… and don’t think for a moment that you have
mastered Python! I certainly haven’t. Also, we have not touched on object-oriented
programming, gaming, pygame, pyode and its physics engine, network gaming… the list
is endless. If you want to move on to a different language, then go right ahead. Nobody
is stopping you. But if you like Python, I might suggest that you take a look at VPython
(www.vpython.org) and/or PyGame (www.pygame.org). I am particularly fond of
VPython and it is easily installed whether you use Windows or Linux. Here is a simple
example (2 lines and 1 comment!) of a VPython program from the VPython website
tutorial:

The Sphere

simple vpython program
from visual import *
sphere()

 Save and run the program and this is what you see:

 How easy was that? Here is a second program example from the website and/or
the installed VPython example programs:

The Bouncing Ball

pyBall.py

 422

a ball bouncing under gravity
from visual import *

floor = box (pos=(0,0,0), length=4, height=0.5, width=4,
color=color.blue)
ball = sphere (pos=(0,4,0), radius=1, color=color.red)
ball.velocity = vector(0,-1,0)
dt = 0.01

while 1:
rate (100)
ball.pos = ball.pos + ball.velocity*dt
if ball.y < ball.radius:
ball.velocity.y = -ball.velocity.y

else:
ball.velocity.y = ball.velocity.y - 9.8*dt

 When this program is running, you should see a red ball bouncing on a blue
platform under gravitational influence. It should look something like this:

 I am a huge fan of VPython! 13 lines of code… 13 lines! Right-click on the
picture and move the mouse. VPython also has built-in mouse routines! Here is another
VPython example program:

 423

Bouncing Ball 2

bounce2.py

from visual import *

print """
Right button drag to rotate "camera" to view scene.
 On a one-button mouse, right is Command + mouse.
Middle button to drag up or down to zoom in or out.
 On a two-button mouse, middle is left + right.
 On a one-button mouse, middle is Option + mouse.
"""

side = 4.0
thk = 0.3
s2 = 2*side - thk
s3 = 2*side + thk
wallR = box (pos=(side, 0, 0), length=thk, height=s2, width=s3,
color = color.red)
wallL = box (pos=(-side, 0, 0), length=thk, height=s2, width=s3,
color = color.red)
wallB = box (pos=(0, -side, 0), length=s3, height=thk, width=s3,
color = color.blue)
wallT = box (pos=(0, side, 0), length=s3, height=thk, width=s3,
color = color.blue)
wallBK = box(pos=(0, 0, -side), length=s2, height=s2,
width=thk, color = (0.7,0.7,0.7))

ball = sphere (color = color.green, radius = 0.4)
ball.mass = 1.0
ball.p = vector (-0.15, -0.23, +0.27)

side = side - thk*0.5 - ball.radius

dt = 0.5
t=0.0
while 1:
 rate(100)
 t = t + dt
 ball.pos = ball.pos + (ball.p/ball.mass)*dt
 if not (side > ball.x > -side):
 ball.p.x = -ball.p.x
 if not (side > ball.y > -side):
 ball.p.y = -ball.p.y
 if not (side > ball.z > -side):
 ball.p.z = -ball.p.z

 424

 That’s it… that’s all the code needed to produce a nice bouncing ball inside a
box. The image is on the next page.

 All of the VPython programs here are either from the VPython website or from
the example programs installed with VPython. Here is a Lorenz program.

VPython Lorenz

VPython.py Lorenz

from visual import *

print """
Right button drag to rotate "camera" to view scene.
 On a one-button mouse, right is Command + mouse.
Middle button to drag up or down to zoom in or out.
 On a two-button mouse, middle is left + right.
 On a one-button mouse, middle is Option + mouse.
"""
scene.title = "Lorenz differential equation"
scene.center = vector(25,0,0)

lorenz = curve(color = color.black, radius=0.3)

 425

Draw grid
for x in arange(0,51,10):
 box(pos=(x,0,0), axis=(0,0,50), height=0.4, width=0.4,
color=0.6)
for z in arange(-25,26,10):
 box(pos=(25,0,z), axis=(50,0,0), height=0.4, width=0.,
color=0.6)

dt = 0.01
y = vector(35, -10, -7)

for t in arange(0,10,dt):
 # Integrate a funny differential equation
 dydt = vector(- 8.0/3*y[0] + y[1]*y[2],
 - 10*y[1] + 10*y[2],
 - y[1]*y[0] + 28*y[1] - y[2]);
 y = y + dydt*dt

 # Draw lines colored by speed
 c = clip([mag(dydt) * 0.005], 0, 1)[0]

 lorenz.append(pos=y, color=(c,0, 1-c))

 rate(500)

 And here is the Lorenz program after a few seconds:

 426

 Try some of the icon buttons at the top of the graphics window and see what
happens. Also use the mouse buttons to rotate and zoom the image.

 I can’t leave until I give one more Mandelbrot program from the VPython
examples:

VPython Mandlebrot

VPython Mandlebrot

from __future__ import division
from visual.graph import *

Bruce Sherwood, Jan. 1, 2008
Use points object to make a pixel-like plot of a fractal

XMIN = -2
XMAX = 0.5
YMIN = -1
YMAX = 1
g = gdisplay(width=750, height=600, xmin=XMIN, xmax=XMAX,
ymin=YMIN, ymax=YMAX)
pixels = gdots(shape='square', size=2)
Scale factor: 2 units (YMAX-YMIN) equals 600 screen pixels
Plot 2 by 2 gdots points 2*(2units/600pixels) apart:
r = 2*2/600

Mandelbrot set (see Wikipedia, for example):
max_iteration = 100
for y0 in arange(YMIN, YMAX, r): # range over all pixel positions
 for x0 in arange(XMIN, XMAX, r):
 z = z0 = complex(x0,y0)
 iteration = 0
 while (abs(z) < 2 and iteration < max_iteration):
 z = z*z+z0
 iteration += 1
 # Leave points black if the iteration quickly escapes:
 if (.1 < iteration/max_iteration < 1):
 c = color.hsv_to_rgb((iteration/max_iteration-.1,1,1))
 pixels.plot(pos=(x0,y0), color=c)

Amazing! So much output for so little code! The image is on the next page:

 427

 One really nice aspect of VPython is that it’s under constant development and we
haven’t even scratched the surface of the capabilities found in its features. You owe it to
yourself to explore the sample programs in the installaton and the contributed programs
online. This is no toy!

 I’ll wrap things up for now. It has been an enjoyable experience writing this text.
I am grateful to all the individuals who have inspired me and especially grateful for my
students who daily challenge me to do my best. I have tried to cite in an appropriate
manner when I have borrowed programs, code, and/or ideas. I do not wish to claim that
which is not my own!

 Well it’s been fun and now you are on your own. Go forth and create.

 428

Index

2

2 body problem · 265, 289, 290
2D · 7, 30, 33, 41, 80, 89, 132, 152, 154, 164, 211,

246, 253, 279, 282, 322, 356, 359, 375

3

3 body problem · 265, 281, 287, 289, 290, 292
3 body simulation · 281
3-body problem · 175
3D · 7, 12, 30, 33, 94, 104, 110, 111, 118, 124, 132,

155, 160, 161, 162, 163, 164, 165, 167, 252, 267,
268, 276, 279, 295, 301, 302, 303, 307, 310, 314,
319, 321, 322, 330, 340, 341, 344, 356, 358, 359,
364, 375, 390, 391, 392, 398, 405

4

4D · 7, 132, 167, 198, 364, 375

A

abs · 108, 109, 176, 179, 187, 190, 194, 197, 199, 207,
209, 210, 212, 214, 215, 217, 224, 229, 236, 243,
296, 303, 311, 354, 358

acceleration · 8, 66, 67, 72, 264, 265, 266, 267, 270,
272, 275, 277, 278, 279, 281, 282, 285, 288, 290,
291, 295, 297, 300, 301, 304, 305, 306, 309, 310,
312

affine matrix · 341
aliasing · 104, 110
animation · 154, 162, 211, 246, 247, 249, 250, 251,

253, 254, 255, 258, 259, 261, 263, 264, 279, 307,
322, 324, 329, 353, 369, 370, 374, 380, 399

Arrays · 118, 119, 294, 297, 305, 307, 312
aspect ratio · 81, 82, 85, 86, 87, 100, 102, 115, 257,

263, 276, 389
Astroid · 59, 62
attractor · 116, 121, 124, 125, 129, 130, 132, 133,

160, 161, 162, 163, 164, 165, 167, 169, 170, 171,
172, 173, 174, 175, 176, 178, 179, 409, 410

axis components · 267

B

Barnsley Fern · 126, 132, 133, 162, 176
basins of attraction · 192, 193, 194
bifurcations · 141
Blank's Carpet · 126
Butterfly Curves · 94

Butterfly Effect · 156

C

calculus · 67, 72, 74, 79, 183, 192, 276, 277, 305
Cardiod · 59, 62, 90, 95, 225, 240
Cartesian coordinates · 28, 80, 81
CAVE/CUBE · 322
Cayley’s Sextic · 90, 95
CERN · 173
Chaos Game · 112, 113, 116, 129, 131, 132, 294
Chaospro · 198
chaptrack · 336, 338, 339, 343, 344, 345, 348, 355,

356, 361, 378, 392, 400, 401, 411, 412
chemistry · 370, 374
Chrysanthemum Curve · 94, 98
Cissoid of Diocles · 90, 95
Cochleoid · 90, 91, 95
Collision detection · 246, 247, 251, 253, 262
Coloration · 194, 214, 225, 236
complex numbers · 184, 186, 192, 211, 213, 222
complex plane · 183, 186, 189, 191, 193, 206, 232
complex roots · 184, 186, 192, 193, 194
Conchoid of de Sluze · 91, 96
conditional statements · 19, 29, 132, 257, 327, 328,

330
coordinate axis · 267
counter · 121, 122, 190
Crosscap · 363, 365

D

difference equations · 79, 148, 150, 153, 167, 276,
277, 305

differential equations · 148, 154, 164
digits of precision · 118, 147
display list · 369, 370, 375, 377, 392
display lists · 369, 380
distance formula · 164, 185
Double Folium · 91, 96
DrPython · 8, 10, 11, 13, 14, 17, 23, 24, 25, 31, 33, 89,

101, 138, 335
dynamic systems · 150
dynamics · 136, 162, 165, 167, 251, 265, 269, 283,

289, 291, 294, 307, 321

E

electron cloud model · 370
electron energy level · 370
ellipse · 54, 57
endit · 19, 187, 190, 191, 194, 199
Epicycloid · 59, 62
Epitrochoid · 60, 62
escape to infinity · 210, 212, 213, 222, 229, 232, 242

 429

Etruscan Venus · 367, 368

F

fabs · 407
Feigenbaum · 140, 143
Felix Klein · 364
Fermat’s Spiral · 92, 96
fog · 322, 405, 408
Folium · 92, 96
for loop · 56, 121
fractals · 118, 124, 132, 134, 185, 193, 194, 196, 198,

203, 211, 212, 213, 214, 222, 380
Fractint · 198
Freeth's Nephroid · 92

G

Gaston Julia · 206
George Francis · 6, 99, 336, 344, 397
German bell · 345
GingerBread Man · 179, 182
GL_AMBIENT · 296, 302, 310, 325, 332, 349, 393,

394, 406, 407, 413, 415
GL_AUTO_NORMAL · 393
GL_COLOR_BUFFER_BIT · 27, 28, 33, 34, 35, 38,

41, 46, 50, 55, 68, 82, 84, 100, 102, 104, 115, 120,
130, 137, 142, 143, 149, 156, 159, 163, 169, 172,
175, 177, 179, 187, 207, 209, 216, 224, 235, 242,
247, 250, 262, 272, 279, 280, 286, 298, 306, 315,
323, 328, 331, 337, 342, 347, 354, 360, 377, 388,
391, 398, 405, 410, 417

GL_COLOR_MATERIAL · 296, 302, 303, 311,
325, 332, 349, 413

GL_COMPILE · 377, 408, 415
GL_CW · 393
GL_DEPTH_BUFFER_BIT · 280, 286, 298, 306,

315, 323, 328, 331, 337, 342, 347, 354, 360, 377,
398, 405, 410, 417

GL_DEPTH_TEST · 283, 295, 301, 302, 310, 325,
332, 339, 349, 356, 361, 378, 385, 393, 401, 405,
408, 413, 416

GL_DIFFUSE · 296, 302, 310, 311, 325, 332, 349,
393, 394, 406, 407, 413, 415

GL_FOG · 405
GL_FOG_END · 405
GL_FOG_MODE · 405
GL_FOG_START · 405
GL_FRONT · 296, 302, 311, 325, 332, 349, 394, 406,

407, 413, 415
GL_LIGHT_MODEL_LOCAL_VIEWER · 393
GL_LIGHT0 · 325, 326, 332, 334, 347, 349, 406,

408, 411, 413, 416
GL_LIGHT1 · 296, 302, 303, 310, 311
GL_LIGHTING · 296, 302, 303, 311, 325, 332, 349,

405, 408, 413, 416, 417, 418
GL_LINE_LOOP · 37, 350
GL_LINE_STRIP · 37, 45, 133, 143, 144, 350, 399

GL_LINEAR · 405
GL_LINES · 36, 37, 38, 39, 40, 43, 45, 47, 50, 54, 68,

74, 82, 84, 133, 350, 417
GL_MODELVIEW · 82, 85, 87, 100, 103, 116, 129,

149, 156, 168, 224, 228, 234, 257, 263, 271, 284,
298, 313, 326, 334, 337, 338, 342, 344, 348, 354,
355, 360, 361, 377, 378, 389, 398, 400, 401, 405,
410, 411, 416, 417

GL_NORMALIZE · 393
GL_POINTS · 33, 35, 36, 37, 38, 41, 42, 45, 46, 47,

50, 54, 55, 57, 69, 72, 76, 82, 85, 100, 102, 105,
115, 119, 120, 121, 123, 125, 131, 133, 137, 142,
143, 149, 157, 160, 163, 169, 172, 175, 178, 179,
187, 191, 207, 208, 210, 212, 214, 215, 217, 224,
225, 236, 243, 350, 377, 389, 392

GL_POLYGON · 350
GL_POSITION · 296, 302, 310, 326, 334, 347, 406,

411, 416
GL_PROJECTION · 82, 85, 86, 100, 102, 115, 129,

149, 156, 168, 223, 228, 234, 256, 262, 271, 284,
298, 313, 325, 333, 338, 344, 348, 355, 361, 378,
389, 400, 401, 405, 411, 416, 417

GL_QUAD_STRIP · 350
GL_QUADS · 350
GL_SCISSOR_TEST · 418
GL_SHININESS · 325, 332, 349, 394, 406, 415, 416
GL_SMOOTH · 295, 302, 310, 339, 343, 349, 356,

361, 378, 401, 413
GL_SPECULAR · 296, 302, 303, 311, 325, 332, 349,

394, 406, 407, 415, 416
GL_TEXTURE · 339, 344, 355, 361, 378, 400
GL_TRIANGLE_FAN · 337, 342, 343, 347, 350
GL_TRIANGLE_STRIP · 350, 354, 358, 360, 406
GL_TRIANGLES · 36, 350
glBegin · 33, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46,

47, 50, 54, 55, 57, 68, 69, 72, 74, 76, 82, 84, 85,
100, 102, 105, 115, 119, 120, 121, 123, 125, 131,
133, 137, 142, 143, 144, 149, 157, 160, 163, 169,
172, 175, 178, 179, 187, 191, 207, 208, 210, 212,
214, 215, 217, 224, 225, 236, 243, 337, 342, 343,
347, 350, 354, 358, 360, 377, 389, 392, 399, 406,
417

glCallList · 377, 384, 394, 405, 406, 418
glClear · 25, 27, 28, 33, 35, 38, 41, 46, 50, 55, 68,

82, 84, 100, 102, 104, 115, 120, 130, 137, 142,
143, 149, 156, 159, 163, 169, 172, 175, 177, 179,
187, 207, 209, 216, 224, 235, 242, 247, 250, 251,
262, 272, 279, 280, 286, 298, 306, 315, 323, 328,
331, 337, 342, 347, 354, 360, 377, 388, 391, 398,
405, 410, 417

glClearColor · 33, 34, 35, 37, 41, 57, 68, 71, 81,
99, 102, 115, 129, 137, 149, 156, 168, 187, 207,
211, 213, 216, 223, 228, 233, 242, 247, 261, 270,
283, 295, 310, 325, 332, 338, 348, 355, 361, 378,
388, 391, 400, 405, 411, 416

glColor3f · 33, 35, 37, 38, 41, 46, 47, 50, 55, 68,
82, 84, 102, 105, 106, 109, 110, 115, 125, 129,
130, 131, 133, 137, 142, 143, 149, 150, 151, 157,
160, 162, 163, 164, 168, 169, 172, 175, 178, 179,
191, 194, 197, 207, 208, 210, 212, 213, 214, 215,
217, 224, 225, 226, 236, 298, 306, 315, 337, 338,
342, 347, 354, 358, 360, 363, 377, 391, 399

 430

glColor3ub · 35, 187, 191, 194, 197, 214, 243, 247,
261, 272, 279, 286, 325, 332, 410, 417

glEnable · 283, 295, 296, 301, 302, 303, 310, 311,
325, 332, 339, 349, 356, 361, 378, 385, 393, 401,
405, 406, 408, 413, 416, 418

glEnd · 34, 35, 36, 37, 38, 41, 42, 43, 45, 46, 47, 50,
55, 69, 72, 76, 82, 84, 85, 100, 102, 105, 106, 115,
119, 120, 123, 131, 137, 142, 143, 144, 150, 157,
160, 164, 169, 172, 175, 178, 179, 188, 191, 207,
208, 210, 212, 214, 215, 217, 224, 225, 236, 243,
337, 338, 342, 347, 354, 358, 360, 377, 389, 392,
399, 406, 418

glEndList · 377, 408, 416
Glenn Chappell · 336, 338, 344
glFlush · 25, 26, 28, 34, 35, 36, 38, 41, 43, 47, 50,

55, 69, 82, 85, 100, 102, 105, 106, 115, 119, 120,
124, 131, 137, 139, 142, 143, 144, 150, 157, 160,
164, 169, 172, 175, 178, 179, 188, 191, 208, 210,
212, 214, 215, 217, 224, 225, 236, 243, 248, 251,
253, 254, 338, 343, 377, 389, 392, 399

glFogf · 405
glFogfv · 405
glFogi · 405
glFrontFace · 393
glGenLists · 377, 408, 415
glGetFloatv · 339, 344, 348, 355, 361, 378, 400, 411
glLightfv · 296, 302, 303, 310, 325, 326, 332, 334,

347, 349, 393, 406, 411, 413, 416
glLightModelfv · 393, 413
glLineWidth · 37, 45, 68, 398
glLoadIdentity · 82, 85, 86, 87, 100, 102, 103, 115,

116, 129, 149, 156, 168, 223, 224, 228, 234, 256,
257, 263, 271, 284, 298, 311, 312, 313, 316, 317,
325, 326, 334, 337, 338, 339, 342, 344, 347, 348,
354, 355, 360, 361, 377, 378, 389, 398, 400, 401,
402, 405, 410, 411, 416, 417

glMaterialfv · 296, 302, 303, 311, 325, 332, 349, 406,
407, 415, 416

glMatrixMode · 82, 85, 86, 87, 100, 101, 102, 103,
115, 116, 129, 149, 156, 168, 223, 224, 228, 234,
256, 257, 262, 263, 271, 284, 298, 313, 325, 326,
333, 334, 337, 338, 339, 342, 344, 348, 354, 355,
360, 361, 377, 378, 389, 398, 400, 401, 405, 410,
411, 416, 417

glMultMatrixf · 337, 339, 342, 343, 344, 347, 348,
354, 355, 360, 361, 377, 378, 398, 400, 410, 411

glNewList · 377, 408, 415
glOrtho · 325, 334, 338, 355, 361, 378, 400, 401, 416
glPointSize · 37, 38, 41, 43, 44, 45, 46, 50, 55,

59, 60, 82, 84, 91, 94, 125, 133, 137, 142, 143,
157, 377

glPopMatrix · 247, 251, 252, 253, 262, 272, 279, 286,
298, 306, 315, 324, 329, 332, 338, 339, 343, 344,
347, 348, 355, 361, 377, 378, 399, 400, 406, 407,
410, 411

glPushMatrix(· 247, 251, 252, 253, 262, 272, 279,
286, 298, 306, 315, 323, 324, 328, 329, 331, 337,
339, 342, 344, 347, 348, 355, 361, 377, 378, 398,
400, 406, 407, 410, 411

glRasterPos2i · 418

glRotatef · 57, 323, 328, 329, 330, 331, 336, 339, 344,
348, 355, 361, 378, 400, 405, 406, 407, 411, 416,
417

glScalef(x, y, z) · 255, 330
glScissor · 416
glShadeModel · 295, 302, 310, 339, 343, 349, 356,

361, 378, 401, 413
glTranslate · 247, 250, 251, 252, 255, 262
glTranslatef · 272, 279, 286, 298, 306, 315, 394, 398,

405, 406, 407, 410
gluCylinder · 407
gluDisk · 407
gluLookAt · 271, 276, 277, 280, 284, 298, 309, 311,

312, 313, 316, 317, 318, 348, 400, 411, 416
gluNewQuadric · 406
gluOrtho2D · 33, 34, 35, 37, 41, 42, 45, 47, 50, 55,

56, 57, 59, 60, 68, 71, 74, 82, 84, 85, 86, 88, 100,
103, 105, 115, 116, 129, 137, 143, 149, 152, 156,
163, 164, 165, 168, 169, 172, 173, 175, 176, 179,
187, 189, 195, 207, 216, 223, 228, 234, 242, 247,
257, 261, 263, 389, 417

gluPerspective · 25, 271, 276, 284, 298, 313, 348,
391, 400, 405, 411, 416

GLUT_ACTIVE_SHIFT · 314, 319, 352
GLUT_BITMAP_HELVETICA_18 · 415
GLUT_BITMAP_TIMES_ROMAN_24 · 407
GLUT_DEPTH · 326, 334, 339, 349, 356, 362, 379,

401, 408, 413, 419
GLUT_DOUBLE · 254, 263, 273, 279, 287, 298,

315, 326, 334, 339, 349, 356, 362, 379, 401, 408,
413, 419

GLUT_DOWN · 352
GLUT_KEY_DOWN · 258, 314, 319, 325, 327, 333,

401, 407
GLUT_KEY_LEFT · 258, 314, 319, 325, 327, 333,

407
GLUT_KEY_RIGHT · 258, 314, 319, 325, 328, 333,

407
GLUT_KEY_UP · 258, 314, 319, 325, 327, 333, 401,

407
GLUT_LEFT_BUTTON · 225, 230, 237, 352
GLUT_RGB · 26, 28, 34, 36, 41, 69, 83, 100, 103,

116, 131, 138, 150, 157, 169, 188, 208, 217, 225,
238, 243, 248, 254, 263, 273, 287, 298, 315, 326,
334, 339, 349, 356, 362, 379, 390, 392, 401, 408,
413, 419

GLUT_RIGHT_BUTTON · 225, 230, 231, 238, 333,
352

GLUT_SINGLE · 26, 28, 34, 36, 41, 69, 83, 100,
103, 116, 131, 138, 150, 157, 169, 188, 208, 217,
225, 238, 243, 248, 254, 390, 392

GLUT_UP · 230, 352
glutAddMenuEntry · 333
glutAddSubMenu · 333
glutAttachMenu · 333
glutBitmapCharacter · 407, 415
glutCreateMenu · 333
glutCreateWindow · 26, 28, 34, 36, 41, 69, 83,

100, 103, 106, 116, 124, 131, 138, 150, 158, 169,
188, 208, 217, 225, 238, 243, 248, 263, 273, 287,

 431

298, 315, 326, 334, 339, 349, 356, 362, 379, 390,
392, 401, 408, 413, 419

glutDisplayFunc · 26, 28, 34, 36, 41, 69, 83,
100, 103, 106, 116, 131, 138, 150, 158, 164, 169,
172, 176, 188, 208, 217, 225, 238, 243, 248, 263,
273, 287, 298, 315, 326, 334, 339, 349, 356, 362,
379, 390, 392, 401, 408, 413, 419

glutGetModifiers · 314, 318, 319
glutGetModifiers() · 352
glutIdleFunc · 248, 250, 254, 263, 273, 287, 299,

315, 339, 349, 356, 362, 379, 401, 408, 413
glutInit · 26, 28, 34, 36, 41, 69, 83, 100, 103, 116,

131, 138, 150, 157, 169, 188, 208, 217, 225, 238,
243, 248, 263, 273, 287, 298, 315, 326, 334, 339,
349, 356, 362, 379, 390, 392, 401, 408, 413, 419

glutInitDisplayMode · 26, 27, 28, 34, 36, 41,
69, 83, 100, 103, 116, 131, 138, 150, 157, 169,
188, 208, 217, 225, 238, 243, 248, 254, 263, 273,
279, 287, 298, 315, 326, 334, 339, 349, 356, 362,
379, 390, 392, 401, 408, 413, 419

glutInitWindowPosition · 27, 28, 34, 36, 41,
69, 83, 100, 103, 116, 131, 138, 150, 158, 169,
188, 208, 217, 225, 238, 243, 248, 263, 273, 287,
298, 315, 326, 334, 339, 349, 356, 362, 379, 390,
392, 401, 413, 419

glutInitWindowSize · 27, 28, 34, 36, 41, 69, 83,
100, 103, 116, 131, 138, 139, 150, 158, 169, 188,
208, 217, 225, 238, 243, 248, 263, 273, 287, 298,
315, 326, 334, 339, 349, 356, 362, 379, 390, 392,
401, 408, 413, 419

glutKeyboardFunc · 83, 88, 89, 101, 103, 116, 131,
138, 150, 158, 169, 225, 238, 248, 263, 273, 287,
298, 315, 326, 334, 339, 349, 356, 362, 379, 390,
401, 408, 413, 419

glutMainLoop · 26, 28, 34, 36, 41, 69, 83, 101,
103, 116, 131, 138, 150, 158, 169, 188, 208, 217,
225, 238, 243, 248, 264, 273, 287, 299, 316, 320,
326, 334, 339, 349, 356, 362, 379, 390, 392, 402,
408, 413, 419

glutMotionFunc · 349, 401, 413, 419
glutMouseFunc · 225, 229, 230, 231, 238, 401, 419
glutPassiveMotionFunc · 339, 344, 349, 356, 362,

379, 401, 413
glutPostRedisplay · 198, 224, 228, 234, 247, 250,

262, 272, 278, 286, 297, 305, 306, 313, 325, 326,
328, 331, 333, 338, 339, 343, 347, 348, 355, 360,
361, 377, 378, 399, 401, 408, 411, 412, 418, 419

glutReshapeFunc · 83, 85, 88, 89, 100, 103, 116, 189,
257, 263, 273, 287, 298, 315, 326, 334, 339, 349,
356, 362, 379, 390, 401, 413, 419

glutSolidCone · 255, 324, 329, 332
glutSolidCube · 255, 324, 329, 332
glutSoliddodecahedron · 255
glutSolidDodecahedron · 324, 329, 332
glutSolidIcosahedron · 255, 324, 329, 332
glutSolidOctahedron · 255, 324, 329, 332
glutSolidSphere · 247, 251, 253, 256, 262, 272, 279,

286, 298, 306, 315, 324, 329, 332, 407, 410
glutSolidTeapot · 255, 324, 329, 332, 408
glutSolidTetrahedron · 255, 324, 329, 332
glutSolidTorus · 255, 324, 329, 332
glutSpecialFunc · 259, 315, 320, 326, 334, 401, 408

glutSwapBuffers · 254, 262, 272, 279, 286, 298, 307,
315, 324, 329, 332, 338, 343, 347, 354, 360, 377,
399, 405, 410, 418

glutWireCone · 324, 328, 331
glutWireCube · 32, 324, 328, 331
glutWireDodecahedron · 324, 329, 331
glutWireIcosahedron · 324, 329, 332
glutWireOctahedron · 324, 329, 332
glutWireSphere · 31, 32, 308, 324, 328, 331, 338,

342
glutWireTeapot · 25, 28, 31, 324, 329, 332, 416
glutWireTetrahedron · 32, 324, 329, 332
glutWireTorus · 324, 328, 331, 416
glVertex2f · 25, 33, 35, 36, 37, 38, 39, 41, 42, 43,

45, 46, 47, 50, 55, 68, 69, 72, 73, 76, 82, 84, 85,
92, 93, 94, 100, 102, 105, 106, 115, 119, 120, 123,
124, 125, 131, 133, 137, 142, 143, 144, 149, 150,
151, 157, 160, 161, 162, 163, 164, 165, 169, 172,
175, 176,�178, 179, 188, 191, 197, 207, 208, 210,
212, 213, 214, 215, 217, 224, 225, 236, 243, 252,
389

glVertex2i · 418
glVertex3f · 252, 354, 358, 360, 363, 364, 392, 406
glVertex3fv · 337, 338, 342, 343, 347, 377, 399
glViewport · 82, 85, 86, 100, 102, 115, 223, 228, 234,

256, 262, 271, 284, 298, 313, 325, 333, 338, 348,
355, 361, 378, 389, 400, 411, 416, 417

Gnofract · 198
GRAPE · 307
gravitational constant · 74, 265, 270, 274, 279, 291
gravitational field · 261
Gumowski-Mira attractor · 172

H

Henon strange attractor · 179
Henry Cavendish · 265
Hyperbolic Spiral · 93, 97
Hypocycloid · 60, 63
Hypotrochoid · 60, 63

I

Ikeda attractor · 168, 172
illiOct · 339, 340, 379
illiOctahedron.c · 336
illiTorus · 353, 356, 357, 362, 397
import · 14, 18, 20, 25, 26, 28, 33, 34, 41, 42, 68,

70, 81, 84, 89, 91, 99, 101, 102, 114, 116, 119,
127, 129, 137, 148, 149, 152, 156, 168, 186, 188,
206, 216, 222, 227, 232, 241, 242, 246, 248, 249,
261, 269, 281, 294, 309, 322, 330, 336, 340, 345,
350, 353, 359, 375, 388, 391, 397, 405, 409, 415,
421, 422, 423, 424

index · 20, 118, 121, 300, 301
inverse iteration method · 215, 241
Involute of a Circle · 60, 63
iterated function · 129, 222

 432

iterations · 124, 125, 133, 139, 141, 144, 146, 178,
184, 187, 190, 191, 205, 207, 209, 210, 211, 212,
213, 215, 217, 224, 229, 232

iterative equation · 183

J

jaggies · 104, 110
Julia set · 193, 206, 207, 208, 209, 210, 212, 216, 375
Jun Makino · 265, 269, 280, 281, 294, 307, 309

K

kinetic energy · 291
Klein Bottle · 364

L

law of universal gravitation · 265, 266, 291
Limaçon · 84, 88
linear algebra · 86, 336
Lissajous/Bowditch · 57, 80
logistic equation · 136, 137, 139, 140, 141, 143, 144,

148
loop · 18, 20, 26, 30, 36, 42, 43, 46, 48, 54, 55, 56, 57,

59, 60, 61, 62, 72, 73, 75, 76, 90, 91, 92, 93, 105,
109, 119, 121, 124, 127, 142, 144, 152, 159, 160,
176, 177, 178, 179, 186, 189, 190, 191, 195, 210,
211, 214, 215, 217, 229, 244, 301, 303, 305, 306,
307, 347, 359, 397

looping · 18, 19, 22, 56, 84, 91, 189, 346
Lorenz · 154, 155, 156, 157, 158, 159, 160, 161, 162,

163, 164, 165, 167, 169, 409, 410, 413, 424
Lorenz attractor · 160, 161, 162, 163
Lotka-Volterra · 148, 152

M

Mandelbrot Set · 211, 222, 225, 226, 238, 239
map · 80, 113, 175, 415
Mark Kilgard · 415
mass · 65, 265, 266, 274, 288, 290, 292, 295, 300,

303, 304, 307, 310, 423
mathematical curves and surfaces · 358
mathematical visualization · 404
matrices · 86, 336, 344
matrix · 82, 85, 86, 87, 100, 102, 103, 107, 115, 116,

129, 149, 156, 168, 177, 223, 224, 228, 234, 252,
256, 257, 262, 263, 271, 284, 298, 313, 317, 324,
328, 329, 336, 337, 341, 342, 343, 344, 346, 375,
389, 397, 410

midpoint conjecture · 397
Miller’s Madness · 56
miscellaneous programs · 387, 388
Mobius strip · 364
modulus · 206, 210, 229

Moire Patterns · 104
mouse interaction · 198, 335, 336
MSA (Moving Stars Around) · 265
M-Set · 222, 224, 225, 226, 227, 229, 231, 232, 233,

234, 235, 236, 237, 239, 240, 241, 242, 243, 244

N

Nate Robins · 415
navigation · 307, 309
NBody problem · 280
nbody simulation · 294, 308
Nephroid · 61, 63, 92, 97
Newton’s Laws of motion · 167
Newton’s method · 183, 184, 190, 191, 193, 194,

195, 196, 197, 209
Newton's 2nd law of motion · 265
numpy · 41, 42, 68, 81, 84, 91, 99, 102, 116, 119,

127, 129, 137, 149, 156, 168, 176, 186, 188, 190,
206, 216, 222, 232, 242, 249, 269, 281, 294, 309

O

octahedron · 336, 337, 340, 341, 342, 343
OpenGL lighting · 303, 307, 356, 359
OpenGL SuperBible · 322, 330
orbital · 175, 290, 292, 304, 370, 373, 374
ordered triple · 336

P

parametric · 30, 50, 54, 55, 56, 57, 59, 60, 61, 67, 70,
80, 81, 89, 92, 149, 151, 153, 160, 162, 304, 353,
356, 358, 359, 360, 363, 364, 367, 369

pendulum · 167
phase portrait · 168, 175
physics · 7, 8, 12, 65, 66, 67, 74, 75, 89, 170, 173, 183,

246, 253, 259, 265, 268, 280, 287, 288, 303, 343,
421

Piet Hut · 265, 269, 280, 281, 291, 294, 307, 308, 309
Poincaire Map · 168
Poincaire Section · 168
point cloud · 370, 373, 374
polar · 30, 59, 80, 81, 82, 84, 85, 89, 90, 91, 92, 93,

94, 98
population · 136, 138, 139, 140, 141, 142, 143, 144,

145, 148, 149, 150, 152, 153
pop-up menu · 330, 334
predator-prey model · 148, 152
predator-prey relationship · 148
projectile · 67, 73, 74, 76, 77, 78, 79
projection · 82, 85, 86, 100, 102, 115, 129, 149, 156,

160, 161, 162, 164, 168, 223, 228, 234, 256, 262,
271, 284, 298, 313, 364, 375, 389, 393, 416, 417

pseudo-code · 19, 123
psyco module · 188
PyGame · 421
PyMathArt · 102

 433

pyramid · 343
Pythagorean · 185, 210, 269
Pythagorean Theorem · 185

Q

quadrant · 176, 187, 191, 194
quantum theory · 370
quaternion · 375, 376, 380
quaternion fractals · 380

R

radians · 51, 53, 59, 62, 66, 68, 71, 90, 132
Rainey System · 165
randint · 115, 120, 121, 123, 126, 127, 388, 389, 391
random · 112, 113, 114, 116, 120, 121, 122, 124, 125,

127, 129, 130, 132, 136, 145, 149, 152, 153, 156,
167, 168, 169, 175, 176, 216, 242, 279, 294, 296,
299, 303, 304, 309, 311, 375, 377, 381, 382, 388,
389, 390, 391, 397, 398, 399, 403

random number · 112, 113, 153, 279
random walk · 388, 390
randomize · 130, 152
RedBook · 12, 57
Rhodonea Curves · 93, 97
Richard Wright · 322
Rikitake · 164, 165, 166
Robert May · 143
Roessler attractor · 163, 164
rotate · 86, 322, 323, 327, 328, 329, 330, 336, 337,

342, 343, 350, 356, 357, 370, 392, 402, 423, 424

S

Scite · 8, 10, 11, 24
Sierpinski Gasket · 116, 117, 118, 120, 121, 122,

124, 125, 129, 132, 162
Sierpinski sponge · 391, 392
spatial order · 341
Spiral of Archimedes · 93, 98
sqr · 30
Steiner’s Roman Surface · 365, 368
string.find · 14, 19, 20, 21, 25
Stuart Levy · 344
Super-3 numbers · 13, 15, 21, 22
Super-d numbers · 21

T

Talbot’s Curve · 61, 63
tetracuspid · 59
time.clock() · 394, 395
torus · 167, 175, 354, 356, 357, 358, 360, 362, 363,

365, 366, 415, 418
trajectory · 65, 67, 69, 71, 72, 73, 74, 76, 77, 79
trifolium · 92
Trigonometric functions · 55
Triscuspoid · 61
Tschirnhausen’s Cubic · 56

U

unit vector · 266

V

vector · 65, 66, 67, 71, 251, 266, 267, 268, 271, 275,
277, 290, 303, 343, 422, 423, 424, 425

velocity · 8, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 77,
78, 251, 259, 267, 268, 269, 271, 272, 274, 277,
278, 279, 280, 281, 282, 284, 286, 288, 290, 295,
300, 301, 304, 305, 306, 307, 309, 310, 422

VPython · 12, 421, 422, 424

W

Witch of Agnesi · 61, 64
Wolfram · 113, 134

X

Xaos · 198

Z

zooming · 57, 101, 193, 194, 196, 203, 225, 228, 229,
231, 232, 234, 397

