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1. INTRODUCTION

Quasicrystals form a very striking case of structures that were constructed
theoretically before there was any idea that there is something in the physical
reality corresponding to it. The source of the theoretical discovery lies in
Penrose’s non-periodic tilings of the plane with infinitely many copies of two
pieces, whose angles are multiples of 36 degrees (R. Penrose [21], [22]; see
M. Gardner [11] for a beautiful survey).

In analogy to this, the question was proposed to do something similar in three
dimensions, where the role of the regular pentagon is taken over by the
icosahedron. This possibility was indicated by A.L. Mackay ([19], [20]), and
subsequently investigated by D. Levine and P.J. Steinhardt ({177).

The dual method, with specialization to the multigrid construction, initiated
in [5] (for a two-dimensional application with angles of 45 and 90 degrees, we
refer to F. Beenker {1]) made it possible to give a fast description of such space
fillings. The dual method was applied to the icosahedral case by P. Kramer and
R. Neri [16]. Not long after that, the real surprise was that the work of
Shechtman et al. ([24]) revealed certain metallic alloys of which the Bragg
diffraction patterns show a five-fold symmetry that had never been observed
before, and that was well known to be impossible with the ordinary periodic
crystal structures.

Most authors refer to the multigrid method as the “‘projection method’’ or
“‘strip method’’, on the basis of the geometrical interpretation given in [5],
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section 1 (vi). This may be very illuminating, but on the other hand it may mean
a certain loss of generality. It may have caused most authors to restrict the
multigrid method to the special form that the grid vectors are the same as the
lattice vectors (with the terminology of section 10 of this paper, this means
D=V). Gihler and Rhyner [10] treat the general case.

The question was proposed by D. Levine and P.J. Steinhardt ([17], [18])
whether the theoretical constructions would lead, by means of Fourier trans-
forms, to diffraction patterns similar to those found by Shechtman et al. This
turned out to be more or less the case. Also quite recently, V. Elser ([8], [9]),
A. Katz and M. Duneau ([7], [14]), F. Géhler and J. Rhyner ([10]) produced
theories leading to Fourier transforms in the form of an every where dense
superposition of delta functions. Related work was published by R.K.P. Zia
and W.J. Dallas ([26]), and by P.A. Kalugin et al. ([13]). All that work is of
a quite algebraic nature, and seems to be quite general and very satisfactory
from that point of view. But what seems to be lacking, is a systematic analytical
foundation. The first thing one should require from the analytical point of
view, is that when working with generalized functions (like infinite sums of
delta functions), one should make it clear to what function space these objects
belong. Also, when dealing with infinite processes, it has to be made clear what
kind of convergence procedures are intended.

A reason for being careful in this respect is that the Fourier transforms of
the crystal patterns (even in the so-called one-dimensional case) are super-
positions of infinitely many delta functions, everywhere dense, but by no means
absolutely convergent, not even in a sense that the deltas in a bounded region
give an absolutely convergent contribution to the Fourier transform.

When studying quasicrystals, or in particular the Penrose patterns, one is
invariably confronted with a particular kind of zero-one-sequences that will be
called Beatty sequences in this paper, following the survey paper [25] by K.B.
Stolarsky. Some authors have refered to these sequences as ‘‘one dimensional
quasicrystals’’, but a clear description of how to specialize a general notion of
quasicrystals in order to get these sequences seems to be lacking. Such a
specialization will be indicated in this paper (section 14).

Different readers may look for different things in this paper, and therefore
it will be explained here what the various parts are, and what can be read
independently.

The paper contains the following items.

(i) A description of the Beatty sequences (sections 2, 3, 4).

(i) A description of multigrid-produced quasicrystals (section 10), with
particular emphasis on what happens if DTV is singular.

(i) A way to get Beatty sequences as one-dimensional quasicrystals
(section 15).

(iv) A description of a theory of generalized functions suitable for the
Fourier analysis of superpositions of infinitely many Dirac delta functions
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(sections 5, 6, 7, 8). Such superpositions will be called ‘‘Dirac combs”’ in this
paper. In general the distribution of the deltas is everywhere dense.

These sections give all their attention to the case of a single variable. Exten-
sions to several variables will not be exposed in that detail.

(v) The Fourier analysis of the Beatty sequences (section 9, revisited in
section 14).

(vi) The Fourier analysis of a substantial class of Dirac combs in several
variables, a class that is mapped into itself by Fourier transform (section 11).
This may be considered as the key result of this paper.

(vii) Application of that result to the Fourier analysis of quasicrystals
(sections 12, 13).

(viii) Indication of how symmetries of quasicrystals reflect in symmetries of
their Fourier transforms (section 16).

(ix) Approximate equality of different quasicrystals and approximate al-
most periodicity of a single quasicrystal (section 17).

The order in which these subjects have been treated is induced by the idea
that some experience with a single variable might give a better understanding
in matters with many variables. This is from an analytic point of view; from
an algebraic or geometric point of view one would rather not treat Beatty
sequences before quasicrystals, since Beatty sequences are no obvious speciali-
zations of quasicrystals. Readers who want to get to the Fourier analysis of
quasicrystals as fast as possible, might be advised to go through sections 5, 6,
7, 8, 10, 11, 12. Readers who might not at all be interested in Fourier analysis,
might just read sections 10, 16 and 17, or just sections 2, 3, 4. And they might
look into sections 14 and 15.

The paper will not mention topics like tilings, fitting conditions, deflation,
Ammann bars, which may be important for the study of quasicrystals in
general, but seem to be unnecessary for their Fourier theory.

2. BEATTY SEQUENCES

We follow the notation of [4] (although the name Beatty sequences was not
used there).

If x is a real number then | x| (the “floor”” of x) is the largest integer <x,
and [x] (the “‘roof”’ of x) is the least integer =x.

Z is the set of all integers. We use notations like Z/a to denote the set of all
numbers of the form k/a where k is an integer; Z — Z/« is the set of all numbers
of the form n—m/¢, where n and m are integers, etc.

The letters ¢ and y denote fixed real numbers, with a>1. If n€Z then L(n)
is defined by

\(\2‘.1) Lin)=y+n/a,
and p(n), g(n) by
2.2) pm=[Ln+1)]-[Lm],

2.3) gm=[Lr+1]-[Lm)].
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Since a@>1 we have 0< L{(n+1)— L(n)< 1, and therefore p(n) and g(n) take no
other values than 0 and 1. We consider p and g as mappings of the set Z into
the set {0, 1}, but they can also be called doubly infinite sequences of zeros and
ones.

According to Theorem 5.3 of [4] the sequence p takes its 1’s on the set
@ —-y)/a] and its 0’s on [(Z+y)a/(a—1)—1], whereas g takes its I’s on
[@-y)a—1] and its zeros on [(Z+y)a/(@—1)]. In other words:

Q4 p(lm-peal=1, p(f(m+y)a/(ea-1)-1])=0,
2.5  g(m-y)ea-1)=1, ¢l (m+yp)a/(a-1)])=0,

for all m, moreover (i) every integer n has either the form | (m —y)e | or the
form [(m+y)a/(@—1)—1], and (ii) every integer n has either the form
[ (m—yp)a—1] or the form | (m + y)a/(e—1) |. And (since &> 1) different m’s
produce different values of | (m—y)a|. The same thing can be said for the
other expressions: note that also a/(a—1)>1.

3. CASES WHERE p AND ¢ ARE DIFFERENT (WITH « IRRATIONAL)

In most cases p and g are just the same, but let us devote some attention to
the exceptions. We have | x | =[x~ 1] unless x is an integer, so the exceptions
stem from cases where L(n) or L(n+ 1) is an integer.

Let us first take the case where is « irrational.

If y¢Z—-7Z/a then we have p(n)=g(n) for all integers n, so p and g are
identical sequences.

If yeZ—7Z/a then there is exactly one pair K, N such that y=K—-N/a. In
that case we have

(i) L) eZ if and only if n=N. Actually L(N)=XK.

(ii) p(n)=q(n) for all integers n, except for the cases n=N—1 and n=N.
There we have

3.1 pWN-1)=0, p(N)=1, gIN-1)=1, g(N)=0.

(iii) For the expressions (m — y)a that occur in (2.4) we have: if meZ then
(m—y)aeZ if and only if m=K. Actually (K—y)a=N.

Likewise, in connection with (2.5), (m+y)a/(¢—1)eZ if and only if
m=N-K, and there we have (m+y)a/(¢—1)=N. So (2.4) and (2.5) re-
confirm (3.1).

4. THE CASES WHERE o IS RATIONAL

For the sake of completeness we also discuss the case that ¢ is rational, in
spite of the fact that it will not be considered in further sections.

Leta=r/s, 0<s<r,seZ, re”Z, and assume that » and s are relatively prime.
Obviously p and g are periodic mod r: p(n)=p(n+r), giny=q(n+r) for all
integers 7.

If y¢Z/r then p(n)=gq(n) for all integers n, so p and g are identical se-
quences.
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If yeZ/r, then y=1t/r with some e Z. We now take integers w and N such
that # = wr— Ns, 0<w<s (this is possible since r and s are relatively prime). We
note

@ L(n)ezif and only if n—NerZ (i.e., n=N (mod r)).

(i) p(n)=gq(n) for all neZ, except for the cases where n=N or n=N-1
(mod s). For all yeZ we have

4.1 ' DIN=1+m)=0, p(N+ry) =1, glN-1+r)=1, g(N+ry}=0.

(iii) For the expression (m — y)a occurring in (2.4) we note, if meZ, that
(m—y)aeZ if and only if mew+sZ. And if m=w+sy with yeZ we have
(m—y)a=N+yr.

Likewise, in connection with (2.5) we note that (m+y)a/(e—1)eZ if and
only if meN—w+(@—s)Z. And if m=N-w+(r—s)y with yeZ then
(m+y)a/(a—1)=N+yr.

So (2.4) and (2.5) reconfirm (4.1).

5. GENERALIZED FUNCTIONS

The paper [3] elaborately treated a class of generalized functions of Gelfand-
Shilov type, particularly well suited for Fourier analysis. In this section we
explain the main things needed in the present note.

The basis of this theory is a set S of very smooth functions, for which all
kinds of analytical operations are very easy. By algebraical operations this set
is extended to a set S*, the elements of which are called generalized functions.
Usually such a set of generalized functions would be introduced as a kind of
dual of S, by means of the inner product in S. In [3] a different point of view
was taken, using ‘‘smoothing operators’’ N,. Nevertheless it is possible to get
the same set of generalized functions by means of dualization, but that still uses
the smoothing operators (see section 6 below).

A complex analytic function f, analytic in the whole complex plane, is called
smooth if positive numbers 4, B, M exist such that

(5.1)  |fGx+)|<M exp (—Ax>+ By?)
for all real numbers x and y. The set of all such fis called S. If fe S, ge S, we

have the inner product

62 (9= | Swetiax

(the bar over g(x) denotes complex conjugate).
If ¢ is a positive number, the smoothing operator N, is defined for all fe S
by

(5.3)  N,f=h, where k@)= | K,(&1)/@)dt,

and

K,(z,t)=(sinh &) "% exp (—n((z*>+ %) cosh a—2zf)/sinh @).
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These smoothing operators have the property
5.4 Na(Nﬁf)=Na+ﬁf

for all positive real numbers @, # and all feS.
In S we have the Fourier transform %, defined by #f=g, where

oo

g)= | e T f(t)dt for all complex z.

It satisfies Parseval’s theorem: (Zf, #g)=(f,g) for all feS, geS. And the
Fourier transform commutes with the smoothing operators: #N,f=N, Zf for
all feS, a>0.

If in the definition of % we replace — 27rizt by 2mizt we get the operator # *.
It is the inverse of Z "

We now explain the notion of generalized function. We consider a mapping
F of the set of all positive numbers into S. So for every >0 the value F(x)
is a smooth function. This mapping F'is taken as an element of S *if and only if

(5.5 NF(p)y=Fla+p)

for all >0, £>0.

The elements of S* are called generalized functions. At first, this is con-
fusing: we think of generalized functions as something that generalizes the idea
of a (real or complex-valued) function on the real line, and the F’s are defined
on the positive half-line with values in S. The connection is made by means of
an embedding that gives a mapping of S into S*. If fe S, then its embedding
into S*is denoted emb (f). Its values are as follows: if emb (f) is called G, then
for all >0 we have G(ax) =N, f. So emb (f) is not a function on the real line,
but a function defined on the positives, with values in S.

If fand g are different elements of S, then emb (f) and emb (g) are different
elements of S*.

If FeS*, feS then we can define a kind of inner product (F, f); for its
definition we refer to section 18 of [3]. It has the usual linearity properties of
a complex inner product. It is related to the inner product in S by means of the
theorem (emb(f),g)=(f,g) for all feS, geS. Moreover we mention the
property that if (F,g)=0 for all g€ S, then F=0. Analogously, if (F,g)=0 for
all FeS*, then g=0 (it suffices to specialize F to emb (g)).

We can also define (f, F), just as the complex conjugate of (F, f).

Many operators on S can be ‘“‘extended’ to S* (see [3], section 19). If K
is an operator on S then the operator L on S* is called an extension of K if
L(emb(f))=emb(K(f)) for all feS. As an example we can extend the Fourier
operator (and keep calling it #). We mention that it keeps the inner product
property (4F, #f)=(F, f) for ail FeS*, fes.

6. QUASI-BOUNDED LINEAR FUNCTIONALS

The contents of this section will not be used in further sections; the only
purpose is to indicate the link with usual distribution theory.
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A linear mapping L of S into the complex numbers will be called quasi-
bounded if for every a>0 there exists a positive number C, such that for all
feS we have

LN =Col .

To every Fe S* there corresponds a quasi-bounded linear functional Mp,
defined by

Mp(f)=(F, f) for all feS.

Conversely, every quasi-bounded linear functional M can be obtained this way
(see [3], section 22).

This opens the way to describe S* in the more usual way of distribution
theory: as a set of linear functionals on a set S of “‘test functions’’. It shows
that S* is essentially the same as one of the classes defined by Gelfand and
Shilov ([12], IV).

7. CONVERGENCE IN S AND §*

In S we can work with a very strong kind of convergence. We say that a
sequence f;, f5, ... of elements of S is S-convergent to 0 if there are positive
numbers A and B such that

Fx+iy) exp (Ax*—By*)—0

uniformly for all x and y. And we say that f, is S-convergent to fif f,—fis
S-convergent to 0. It is denoted by f, -5, /-

We next take a sequence Fy, Fy, ... in S*, and we want to say what it means
that it is S*-convergent to F (again in S*). We remind that an element of S¥*
is always a mapping of the positives into S, so it makes sense to require that
for given a>0 the sequence F(a), Fy(a),... is S-convergent to F(e). If this
happens for every positive @, i.e., if

F(a) —— F(a) for all @>0
then we say that F, is S*convergent to F, which we shall write as
a.1) F,—5F.

It is not hard to show that the limit of an S*-convergent sequence is unique.

There is an easy criterion for establishing this kind of convergence (see
Theorem 24.4 in [3]). It says that the sequence F,F, ... is S*convergent if
and only if for every ke S the sequence of inner products (Fy, ), (F, h), ... is
convergent.

We now express some material not contained in [3].

It is not hard to get to the modification that we have (7.1) if and only if
(F,, h) converges to (F, &) for every 4 (this is easily derived from the previous
statement by considering the mixed sequence F, F, F5, F, F3, ...).

As an application we mention that if F, is S*convergent to F then the
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sequence of its Fourier transforms #F is S*-convergent to #F. It suffices to
consider F=0. If #€ S we now have (F,, # *1)—0, whence (4F,, h)—0 for all
heSs.

We shall also have to deal with the notion of absolutely S *-convergent series.
If Fy, Fy, ... are generalized functions, and if for every 4 € S the series (F,, h) +
+(Fy, h) + ... is absolutely convergent, then there is a unique Fe S* such that
Fi+...+F,is S*convergent to F, and, moreover, in whatever order the terms
of the series are rearranged, it remains S *-convergent to F. Because of this we
say that F) +F,+... is absolutely S*convergent, and that its sum is F.

The converse is also true: if the series is absolutely S*-convergent then for
every h e S the series Y, (F), h) is absolutely convergent (for we know that if the
convergence of a series of complex terms is unaffected by reorderings, then it
converges absolutely).

If ¥ F, is absolutely S*-convergent with sum F then the series of Fourier
transforms Y #F, is absolutely S*convergent too, with sum %F. This easily
follows from (#F, h)=(F,  *h).

8. DIRAC COMBS

If b is a real number, then the ‘“‘Dirac delta function at »’’ is the element of
S* defined by

Ip(a)(t) = K,(2, b)

for all >0 and all complex values of ¢.

For all ge S we have (g,d,) =g(b), which shows that our definition corre-
sponds to the usual idea of what a delta function should be. It is proved as
follows. There is a >0 and an ke S with g=Nzh) ([3], Theorem 10.1). Now
with the above definition of J,(e) and the definition of inner product (]3],
section 18) we get (g, J,) = (4, 5p(a)) = (N, h)(b) = g(b).

Dirac combs can be introduced by means of absolutely convergent series of
Dirac deltas, with the aid of the following theorem.

THEOREM 8.1. Let x;, x,,... be a sequence of real numbers, and let ¢;,cy, ...
be complex numbers. Assume that for every >0

B.1) Yo exp (—exd)
converges absolutely. Then
(82 I,

is absolutely S*-convergent.
Its sum can be called a “‘Dirac comb”’.

REMARK. The x, do not necessarily tend to infinity, so boundedness of the ¢,
would not be always sufficient for (8.1).
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PROOF. According to a remark at the end of section 7 it suffices to show that
for every heS

8.3) Y cu(h,6yx)

converges absolutely. The inner product equals A(x,), and by the definition of
S we have positive numbers M and A4 such that |h()| =M exp (— Ax?) for all
real x. Applying (8.1) with ¢=A we get the absolute convergence of (8.3).

In the case that x,=n for all n, the condition of Theorem 8.1 can be simpli-
fied a little. Instead of (8.1) we can just require, for every separate &, that
¢, exp (—é&n?) is bounded.

We now show a result on some Dirac combs whose Fourier transform again
looks like a Dirac comb.

THEOREM 8.2. Let A(k)'be complex numbers and (k) be real numbers, for
all keZ. We put

8.4 Wn,K)= i Y A(k) exp (2nino(k)).
k| <K
Assume that there is a positive number M such that for all n and all positive
KeZ
(8.5) |W(n,K)| <M
and that for every neZ we have a number V(n) with

8.6) ll<1_r)n W(n,K)=V(n).

Then ¥,_, V(n)d, is absolutely S*.convergent. It represents an element G of
S* The S*convergent series ¥, _, Om+ok) T€Presents an element of S$* for
every k. If K— oo, then

@) T AR T Gneow)

[k} =

is S*convergent to the Fourier transform #G of G.

REMARK. We do not claim that the double series

L X AK)m o

keZ me

is absolutely S *-convergent. Ir; the examples we have to deal with, A(k) is of
the order of 1/k, which gives no absolute convergence.

PROOF. From (8.5} and {8.6) it follows that |V(n)| <=M, so both ¥, W(n,K)Jd,
and ¥, V(n)d, are absolutely S*-convergent.
If K— oo we have

68 T WnKG—— T W,

neZ
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This can be shown by taking inner products with an arbitrary function 4 € S.
With some C>0, ¢>0 we have |h(n)|<C exp (—¢&n?) for all neZ, so

im Y WnKin)= Y WVnhn)

K—-» nez neZ
since term-wise the limit of W(n, K) equals V{(n), and the convergence is domi-
nated by ¥, _, MC exp (—en?).

According to section 7 we can take Fourier transform on both sides of (8.8).

So #G is the S*limit of

B.9) A ¥ WnK)j,).
neZ
The particular Dirac comb ¥, _, d, is its own Fourier transform. This is a
reformulation of Poisson’s formula (see [3] section 27.18). In a similar way, a
simple transformation of Poisson’s formula leads to

B.10) # ¥ J,.,xp Quibn)=exp (—2miab) ¥ 6,,, exp (—2nina)
neZ nelZ

(for all real @, b). We only need the case a=0, b=a(k).
Using (8.4) we now evaluate (8.9) as (8.7), which proves the theorem.

It is not hard to show that, under the assumptions of theorem 8.2, #G is also
the S*limit (if v— o) of

BAD T AGK) exp (~K*/) T S
For a proof we have to make an appeal to the dominated convergence of

Y kz A(k) exp (- k%/v+2mina(k)h(n).
ez

neZ

The convergence procedure in (8.11) is of the same type as the one we shall
meet later in theorem 12.1.

9. FOURIER ANALYSIS OF DIRAC COMBS OF BEATTY SEQUENCES

We take real numbers o and y, with @>1, and consider -the sequence j/]
defined by (2.2). If to every n with p(n) = 1 we attach the delta d, and form the
sum of all of them, we get the Dirac comb of D, and for g we have a similar
thing.

We shall present two methods for evaluating the Fourier transform of this
Dirac comb. We restrict ourselves to irrational values of ¢; the rational case
would be slightly more troublesome.

In the first method we take deltas for both the zeros and the ones of the
sequence, and we provide the zeros with weight 0, the ones with weight 1. So
the Dirac combs C, of p and C, of g can be expressed by

sz Y p(n)o,, = ngl q(n)o,.

neZ
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We define U as a real-valued function of a real variable by
Ux)=|x|-x+4}if x¢Z
Ux)= 0 if xeZ.

We can express the Dirac combs of p and ¢ in terms of U, but we have to
be careful in the exceptional cases. According to section 3, the simple case is
the one with y ¢ Z —Z/a, where we have p =g. Here L(n) (see (2.1)) is never an
integer, so we can write

©.)  |Lm]=UL@)+Lm)—3, [L#A)]=UL@)+Ln)+14.

Therefore C,=C,=R, where

9.2) R= % U< +—+ >5,,— ¥ U<y+ )5 +—— Y O,
neZ [44 neZ neZ

Note that by Theorem 8.1 the three series are all absolutely S*-convergent.
In the cases where yeZ—Z/a we have y=K— N/a, with KeZ, NeZ (see
section 3). If n=N we have instead of (9.1)

[L(N)] = L(N) ] = ULWIN)) + LWN),

whence
©3)  Cp=R+4dy—40y_1,
(9.4) C =R‘—%5N+%5N—l'

We now turn to the question how to determine #R. We know that },,_, J,
is transformed into itself, so it suffices to evaluate ¥ U(y+n/a)d, (the other
term can be treated by taking y+ 1/« instead of yp).

We have for all real x

9.5 U®W=7Y sin Qrkx)/(1k).

Let us write B(k)=(2rik)~' (k#0), B(0)=0. So
Uy +n/a)= lim | ]E B(k) exp Qnik(y +n/a)).
K-  |k|=K

It is well known that the partial sums of (9.5) are uniformly bounded (for the
exact bound see [23], vol 2, Abschnitt VI, nr. 25). So we can apply theorem 8.2,
with the result

7 L Up+n/a)d,= lim % B(k)e*™ L Omik/a

neZ - |kl=K

where the limit has to be taken in the sense of S*convergence.
Using (9.2) we get the Fourier transform of R:

(96) FR=1m ¥ ck) ¥ Omiksa
meZ

K- |k|=K
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in the sense of S*-convergence, with
c(k) = ¥k (e2M*/e _ 1)y /Qpik) if k%0,
c0)=1/a.

The term with c(0) is caused by the last one of the three series in (9.2).
We can write this in a single formula:

y+ la
O o= | ar.
7
If y¢6Z—Z/a then (9.6) presents the Fourier transform of the Dirac combs
of p and g; in the exceptional case y =K — N/a we have to add (in case of p)
or subtract (in case of g) the Fourier transform of {d5—4dx_;, which is the
function whose value at x is

—2miNX __ , = 2ni(N-1)x
(e e )/2.

We next explain the second method. Instead of taking the zeros and ones with
coefficients 0 and 1, we now just look at the ones. According to (2.4) the n
with p(n)=1 can be parametrized by means of | (m—y)a |, where m runs
through Z. With x,,=| (m—y)e], c,, =1 the condition (8.1) is satisfied, so by
‘Theorem 8.1 the series ¥ J, 1is absolutely S*convergent. Its sum is the Dirac
comb of p.

Similarly, the Dirac comb of g is ¥ &, with y,=[(m—y)a—1].

These Dirac combs can also be represented as the sum of an absolutely
convergent double series. We introduce functions P and Q, mapping reals to
reals, by

Px)=10=x<1), P(x)=0 (x=1 or x<0),
O =1 0<x=<1), Qx)=0 (x>1 or x=<0).

If nis an integer, and u is a real number, the condition | u | = 7 is equivalent
to P(u—n)=1, and | u | #n is equivalent to P(u—n)=0. Similarly, [u—1]=n
is equivalent to Qu—n)=1, and [u—1]#n is equivalent to Q(u—n)=0. So
the Dirac comb of p is the sum of the absolutely S*-convergent double series
9.8) Y L P(m-y)x—n)o,,

meZ HEZ

and the one of g is the sum of

(.9 L X O(m-y)a—no,.

meZ neZ

We restrict ourselves to the case that y¢Z — 7/« (the material for dealing
with the exceptional case y € Z— Z/¢ can be found in section 3, part (iii)). Now
(m—7y)x—n is never an integer, so we can safely replace P(x) and Q(x) by
Y(x/a), where

Y(©)=0 (<0 or t>1/a),
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Y =1(0<t<l/a),
Y(0)=%, Y(1/a)=1.
It is now required to find the Fourier transform of R, where

9.10) R= "%:Z ( mﬁe:z Y(m—(y +n/a)))o,.

In spite of the fact that the sum over m contains at most one non-zero term,
we apply Poisson’s summation formula to it. If X= Z7Y this gives
Y Ym-a)= Y e Z*X(k)

keZ

meZ
for all real values of a, so (replacing k by —k)

Y Ym-@p+n/a)= lim YT clk)e*m ke
meZ K-  |kl=K
where c(k) is given by (9.7). As in the first method, it can be remarked that the
partial sums are uniformly bounded. So by Theorem 8.2 we again get to (9.6).

We note that this second method can also be treated as a special case of
theorem 10.1.

10. QUASICRYSTALS PRODUCED BY MULTIGRIDS

The multigrid method was developed in [5] for the particular two-dimensional
case that produces the Penrose tilings, but the method can immediately be
applied to other cases. It was explained in [5] how tilings can be obtained from
their dual figures, and what special forms of the dual have to be chosen in order
to produce the Penrose tilings. These special duals were the ‘‘pentagrids’’. A
pentagrid in the plane is a superposition of 5 ordinary grids (consisting of sets
of equidistant lines). In the present section we shall take the number m instead
of the number 5, and instead of the dimension 2 we take #; instead of the lines
we take hyperplanes of dimension n—1.

We shall assume 0<zn<m. The case n=m can be treated in the same way,
but it would be notationally inconvenient to handle both cases simultaneously.

We shall use matrix notation. By Mg, b) we denote the set of all matrices
with @ rows and b columns. Vectors in a-space will be taken as columns, i.e.,
as elements of M(a, 1). The set Z(a) will be the set of all g-vectors with integral
coordinates.

The transpose of a matrix 4 will be written as AT

We start from m real numbers y,,...,7, and 2m elements d,...,d,,,
V1, ..-» Uy, in R(n); the restriction will be made that the d’s span R(n), and that
none of them is the zero vector. A condition about the v’s will be made at the
end of this section (see (10.12)).

The p’s and d’s lead to a multigrid in the following way. If 1 <j<m, the grid
I'; is the set of all n-vectors z such that (d;, 2)+y;€Z, where (d}, z) denotes the
inner product of d; and z. The set {I, ..., I, } is called a multigrid. The v’s are
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not involved in building the grid, they will help to pass from the grid to the
crystal pattern.

In [5] the vectors d,...,d,, were the 5 fifth roots of unity in the complex
plane; the sum of the y’s was assumed to be zero, but we shall not make that
restriction here. Moreover, in [5] the v’s were equal to the corresponding d’s,
and here we shall not make that assumption either. (These restrictions had the
effect that the duals become the Penrose patterns.)

For arbitrary k£ € Z(m) we define the set E(k). It is the set of all ze R(n) such
that for j=1,...,m

(10.1) kj_1<(dj’ Z)+yj<kj

(ki ..., k,, are the coordinates of the vector k). If E(k) is non-empty then E(k)
is called a mesh. In this case we say that k satisfies the mesh condition. To any
k with E(k)+# we attach the vector

(10.2) Ko+ - +k,0,.

The set of all these will be called the crystal pattern, and will be denoted by Cp.
We have excluded the case m =n, but we note that if m=n and d,, ..., d,, are
linearly independent, we have E(k)#0 for all £, and Cp becomes a simple
periodic structure. So our Fourier analysis of sections 11 and 12 may be modi-
fied to include the case of ordinary crystals.
Following [5], section 8, we phrase the mesh condition E(k) # 8 by saying that
z and 4,,...,4,, exist with 0<1,<1,...,0<4,,<1 such that

(10.3)  (d, D+ y+ A=k, (j=1,...,m).

Let us express this in matrix notation. The column with entries y; is written
as the vector y (€ R(m)), and similarly we build the vector A. The set of all
vectors A€ R(m) with 0<A,<1,...,0<4,,<1 will be denoted Cu(m) (Cu is
mnemonic for ‘‘cube’’). And D e M(m,n) will be the matrix whose rows are
df, ...,d,g. Similarly, Ve M(m, n) will be the matrix with rows vlT yeens v,ﬁ.

Now the mesh condition E(k) #0 can be expressed as the existence of z € R(n)

and A € Cu(m) such that
(10.4) Dz+y+A=k.
In this matrix notation, Cp is the set of all vectors
(10.5)  V7k with ke Z(m), E(k) #0.
We form a Dirac comb by attaching a delta to every k with E(k)+0:
{10.6) b Syrg.
ke Z(m) k)£ 0

It is intended as a generalized function of n variables, but the convergence of
the series has still to be investigated.
Expressing this in terms of this Dirac comb has the advantage that it covers
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the cases where sometimes different vectors k lead to one and the same vector
(10.2); in such cases we should define Cp as a multiset rather than as a set. We
shall see an example of this in section 14.

We shall transform (10.6) by means of (10.4) in the way used in [5], section
8. We take a matrix W e M(m, m —n) with the property that W has rank m—n
and WTID=0. Since D has rank 7 (the vectors dj, ..., d,, were assumed to span
R(n)), the columns of D and W span subspaces of dimension n and m—n,
respectively, and these subspaces are each others orthogonal complement.

If ¢ is any vector in R(m) we have: there exists z€ R(n) with Dz =gq if and
only if W7q=0. Both conditions express that g lies in the space spanned by
the columns of D.

According to (10.4) we can now say that, for any k € Z(m), we have E(k)+9
if and only if there exists a A € Cu(m) such that

10.7) Wltk—1-y)=0.

In order to see this, we have to note that, for all xe R(m), the condition
=0 in equivalent to the existence of ze R(n) with Dz=x.

Let us define the set P(W,y). It is the subset of R(m —n) consisting of all
vectors of the form WT(A+y), where A runs through Cu(m):

(10.8) P(W,y)={WT(A+y)|A e Cu(m)} CR(m—n).

Since W has rank m —n, it is easy to show that P(W, y) does not fall in any
hyperplane with dimension less than m —n. Therefore P(W,y) is the interior
of a polytope. The closure of P(W,y) is the convex hull of the set of points
WT(u+7), where u runs through the set of 2™ vertices of the cube Cu(m).

By means of (10.7) we conclude that the mesh condition E(k)#0is equivalent
to Wlke P(W,y).

We denote the characteristic function of P(W,y) by o, so

(10.9) o(x)=1if xe P(W,y), o(x) =0 otherwise.
Now we have
(10.10) o(WTk)=1 if E(k)#80, o(W k) =0 otherwise.
It follows that (10.6) can be written as
10.11) ¥ oWTk)dyr.
ke Z(m)

This presents the Dirac comb of a quasicrystal in a form that enables us to

evaluate the Fourier transform.

A word may be added here about the role of W. There is a certain amount
of arbitrariness in it: W had just to satisfy WTD=0, and had to have rank
m—n. So P(W,y) does not depend on D and y only: it definitely depends on
the particular choice of W. But the condition WTke P(W,y) depends on D
and y only, since it is equivalent to E(k) #0.

We have not formulated a condition on V'yet. If V' has rank less than n, then
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the vectors vy,...,v,, are linearly dependent, and the whole crystal pattern
would belong to a lower dimensional subspace of R(n). We of course want to
exclude that, but we shall even impose the stronger condition that the matrix
VTD (e M(m, m)) is non-singular:

(10.12) rank (VTD)=n.

This obviously guarantees that vy,...,0,, span R(n) as well as that d,,...,d,
span R(n).

Let us build the matrix N (€ M(m, m)) by taking as its first # columns the n
columns of V, and as its last m1—n columns the m—n columns of W. From
(10.12) we can derive that N is non-singular:

(10.13) rank (N)=m.

A way to prove this, and to see what liberty we have with W, is to transform
D in standard form by means of non-singular matrices A (e M(m,m)) and
B (e M(n,n)):

D=A<I>B,
0

where Ie M(n,n), 0 M(m—n,n). Now

ATy = <K11>’ ATW= <K12)’ ATN = <K11 Ku)
Ky K» Ky Kpn

with Ky, € M(n,n), Ky, € M(n,m—n), K,; € M(m —n,n), Ky, € M(m —n,m— n).
From DTW=0 we get K;,=0, and now (10.12) gives rank (K;,)=#. Since we
required that rank (W)=m —n, we have rank (K,,)=m— n. Therefore rank
(ATN)=m, and (10.13) follows.

The significance of condition (10.12) is that it guarantees that the quasicrystal
more or less fills the space R(n):

THEOREM 10.1. If (10.12) holds then there is a positive number r such that
in R(n) every sphere with radius r contains at least one point of the quasi-
crystal Cp.

PROOF. We denote the norm of any vector z by |z| (both in R(m) and in
R(n)).

If ke R(m) and z € E(k) (which implies that k satisfies the mesh condition)
then the point ¥k of the quasicrystal satisfies (according to (10.4))

(10.14) |V'Dz-VTk|=<s,

if s is the supremum of the set of all numbers V(1 +y) with A € Cu(mn).

Now take any r>s. Consider any sphere with radius r; let y be its center.
Since V7D is non-singular, there is an xe R(m) with ¥"Dx=y. This x may
accidently fall on a grid hyperplane, but we can find a point z which lies inside
a mesh such that |V7D(z—x)|<r—s. If ke R(m) is such that ze E(k), we have
|y— VTk|<r by (10.14). This proves the theorem.
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THEOREM 10.2. If (10.12) does not hold then Cp lies between two parallel
hyperplanes in R(n).

PROOF. Assuming rank (V'D)<n, all points VTDz fall in some hyperplane
of dimension 7 — 1, so by (10.14) all points of Cp have a distance at most s to
that hyperplane.

11. SOME SPECIAL DIRAC COMBS IN HIGHER DIMENSIONAL SPACES

As in section 10, m and n are integers, 0<n<m. The cases n=0and n=m
might be admitted too, but that would give notational inconveniences. The
results for these cases will be mentioned at the end of this section.

We take matrices ¥V e M(m, n), We M(m,m —n). The matrix N € M(m, m) is
built by taking as its first # columns the # columns of ¥, and as its last m—n
columns the columns of W.

We require that N is non-singular. So the V, W, N of section 10 would satisfy
these conditions. The matrix D will not appear in the present section.

If p is any positive number then S” is the set of all smooth functions of p
variables (see [3] section 7). We shall write such functions as functions of a
variable in R(p).

The analog of S* for the case of p variables will be written as S¥* (see [3]
section 21).

The notion of S*-convergence is extended to the higher dimensional cases
in the obvious way, and Theorem 8.1 is extended to this case if we replace
exp (—ex?) by exp (—exTx).

We are now ready to.prove the following theorem:

THEOREM 11.1. If m, n, W, V are as described above, and if fe S ™", then

(1L.1) L WKy

keZ(m)

is absolutely S*convergent and represents an element of §"*. If g is the
Fourier transform of f (g = 4f), then the Fourier transform of the generalized
function (11.1) is again the sum of an absolutely S *-convergent delta series, viz.

(11.2) |det (W)™ T (= UTk)ors,
keZ(m)

where R and U are derived from the matrix N~7 (N~T is the inverse of NT)
in the same way as V and W are obtained from N. In other words, R is the
matrix whose first # columns are the columns of N~7, and U’s columns are
the last m —n columns of N~7. And |det N| is the absolute value of the deter-
minant of N.

PROOF. The absolute S*-convergence of (11.1) is shown by means of the
m-dimensional analogue of Theorem 8.1. We have to show the convergence of

(11.3) ) ) | f(WTk)|exp (—ekTVV k).

keZ,
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Since f is smooth, we have, with some J and some C
| f(WTk)| < C exp (—kTWWTk).

From the fact that N is non-singular we easily derive that V¥V 7+ ww7 is
positive definite, so there is an # >0 such that kK7(VV T+ WW Dk =nk Tk for all
k € R(m). This shows the absolute S *-convergence of (11.3).

Since the Fourier transform of a smooth function is smooth again, the series
(11.2) is absolutely S*-convergent too.

Let us denote (11.1) by F and (11.2) by G; both F and G are in S"*. We
have to show

(11.4) FF=0G.

This can be done by showing that

(11.5) (h,F)=(#nG)

for all A€ S”. Both sides can be written as sums over ke Z(m):

WF)= ¥ hVTRFWTk),
ke Z(m)

and if Z# is denoted by j:
G.G)=ldet M)I™" T JRTK)E(=U"h).
Now (11.5) can be obtained by application of the Poisson summation formula.
We put, for xe R(m),
(11.6) o) =rVT)F(Wx),

(L7 w(®)=|det (V)| HR0E(~ UT),
and will show

(11.8) () ¢eS™, weS™,

(11.9) (i) if y=%¢p then w=y.
Then application of Poisson’s formula

L o)=Y wk)
keZ(m)

ke Z(m)

will finish the prodf of (11.4).
In order to show ¢ € §™ we have to prove an inequality

(11.10) |p(x+iy)|<C exp (- AxTx+ByTy)
for all x, ye R(). As h and f are smooth, we have with some C, A4, B

[B(VT(x+iy))| < C exp (- AxTVVTx+ ByTvvTy),
[fWT(x+ )| <C exp (—Ax"WWTx+ByTWWTy).
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Since VVT+ WwT is positive definite, we get to (11.10) (with new values of
C, A, B). This settles (11.9), since we can give the same proof for y.

Finally (11.9) is a matter of change of variables in an m-fold integral. We
have for u e R(m)

1) =§ h(V T F(W Tx)e( — uTx)dx
where the integral is taken over R(m), with abbreviation
exp (2nit) =e(?).

It will be convenient to use projection operators onto n-dimensional and
(m — n)-dimensional subspaces, with matrices

-(0) o-(0)

In the first formula, 7 is the unit matrix in M(n,n), 0 is the zero matrix in
M(m — n, n); in the second formula 0 is the zero matrix in M(m —n, m—n) and
I is the unit matrix in M(m — n, m—n). Obviously

(11.11) V=NP, W=NQ.
We now change coordinates by N Tx=y:

x@) = |det V)|~ {RPNFQV)e(~u"N"Ty)dy.

Putting PTy=y,, Q7y=y, and noting
uTN~Ty=u"N-T(PPT+0Q )y=u"N"TPy; +u"N~ 70y,
v§e can write the integral as a product of two, both of Fourier type. We find
x(w) =|det (V)| Si(PTN"'w)g(- Q"N ).
Just like (11.11) we have
(11.12) R=N"Tp, U=N"TQ
whence
PIN“'u=RTu, Q"N 'u=U"u.
So by (11.7) we now have established (11.9). This finishes the proof of the
theorem.
We obtain an extension of Theorem 11.1 by straightforward application of
the same method; we just mention the result:
THEOREM 11.2. Letm, n, W, V, R, U, N, f, g be as in theorem 11.1, and let
p e R(m), ge R(m). Then the series

(11.13) ¥ e(—qTk)f Wk +Dp)yiges

ke Z(m)

141



is absolutely S*-convergent, and it Fourier transform is

(11.14) |det (\)|™! T e(— (k- q)"p)g(— UT(k— @)Orri— -

We also mention to what this theorem degenerates in the cases n=0 and
n=m. In the case n=m we get that the Fourier transform of

(11.15) ¥ e(—q"k)onmpsp)

ke Z(m)
equals

(11.16) |det (V)| oz )e(—(k_Q)Tp)aN"(k—q)'

eZ(m

This can be considered as the formula that covers the case of ordinary (periodic)

crystals.
The case n=0 just leads to a form of Poisson’s formula for m variables:

) ) e(—q k) f(NT(k+p) =

keZ(im

=|det M| T ) e(—(k—q)"Pe(-N"'(k—q)).

eZ(m

(11.17)

12. APPLICATION TO THE FOURIER TRANSFORM OF A QUASICRYSTAL

The theorems of section 11 cannot be applied directly to the Fourier
transform of (10.11), since the @ in (10.11) is by no means smooth: it is the
characteristic function of a polytope P(W,y), and therefore not even con-
tinuous. D

We can deal with (10.11) by considering it as the limit of an S*-convergent
sequence of smooth functions of the type (11.1) with smooth f’s. For these fs
we can take smoothings of ¢, by means of the smoothing operators of (5.3).
If v is a positive integer, we take ’

(12.1)  fi=Nype.

It is not hard to show that f,(x)—o(x) for every x, possibly except for the
boundary points of the polytope. And the convergence is dominated in the
following sense: there are positive constants C and A4 such that

(12.2)  |f,(®)|=Cexp (- AxTx)

for all xe R(n) and for all positive integers v.

Before going on, we have to say something about the exceptional cases. There
will be a strong analogy with the exceptional cases yeZ —Z/a in section 9.

Let us say that the vector y is singular if there exists a k€ Z( ) such that
W Tk falls on the boundary of P(W, y). If y is not singular it is called regular.
We note that regularity of y is a matter of y and D (cf. the remark at the end
of section 11).

In section 9 we treated the exceptional cases in detail, but here we avoid all
difficulties by just assuming that y is regular. Not much is excepted that way,
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for in the sense of Lebesgue measure we can say that almost all y are regular.

In the particular case treated in [5] (with m =35, n=2) we were able to show
that this condition is equivalent to the regularity of the pentagrid. (For the case
of general m and n we might say that the multigrid is singular if there is a point
lying on more than n grid hyperplanes).

So from now on we assume that y is regular. Consequently, we have
L WTk)—f( WTK) for all k € Z(m). By means of (12.2) we can now handle the
S*convergence of F, to F, where

F,= Y f(WKdyn

ke Z(m)

and F is the generalized function described by (10.11).

We claim that FV—ELF. To this end we have to show that, for any ~e€ S”,
the inner product (F,, k) converges to (F,A4) in the ordinary sense. This is a
matter of dominated convergence. If v—oo, every term of the series for (¥, /)
converges to the corresponding term of the series for (¥, 4), and the terms are
dominated by

(12.3) Cexp (—AWTkkTW)|n(VTk)|.

If we sum (12.3) over all k € Z(m), we can show that we get a convergent series
of non-negative numbers; the method for this was explained for the case of
(11.10).

As F, —S—>F we also have for the Fourier transforms JF, 5, FF. And
each #F, is of the form (11.2). For all v, the series for #F, has the deltas at
the same places, but we cannot claim that #F is the sum of an absolutely
S*convergent series (like the one for F). And there is, in general, no dominated

convergence like we had with Fv_—S—*>F.

In this respect there is a close analogy with the case of (9.6). In (9.6) the

*_convergence looks simpler: just by means of expanding partial sums. For the
present case such a thing is not attempted. In section 8 it was shown that the
convergence by partial sums implies the one by means of smoothing operators
(see (8.11)). The latter kind of convergency may be slightly weaker, but it is
probably quite adequate for most applications.

We note that the coefficients of the series for 4F, are easily described. In
(11.2) we have to work with g, instead of with g, where

= Ff,= FN1 =Ny 71

The discontinuous function f is a generalized functlon anyway, and so is its

Fourier transform #f. And we have N, , #f SN Ffif vooo.
Let us now phrase the result as a theorem:

THEOREM 12.1. If O0<n<m, and y is regular, then the Fourier transform
of the Dirac comb (10.6) of the pattern Cp (see (10.2)) is the limit of the
S*-convergent sequence Fy,F,,..., where F, is the sum of the absolutely
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*.convergent series

(12.4)  |det (V)| . ZZI( )gv(~UTk)5RTk,

with the notation of theorem 11.1, and g,=N,,, %o, where g is the charac-
teristic function of the polytope P(W,y) it R(m — n) (see (10.8), (10.9)).

13. A GENERALIZATION

The limit procedure explained in section 12 involved approximation of the
characteristic function of a polytope by smooth functions. The particular
polytope was P(W, y), obtained in a particular way from a multigrid. But we
might consider polytopes in general. The generalization we get, means that we
have a theorem of the form of theorem 11.1 (or of theorem 11.2), with f
replaced by the characteristic function ¢ of some polytope P in R(inz — n), and
g replaced by the Fourier transform of that o. In the latter case ((11.2) or
(11.14)) we have to take the limit of g,, where g,=N,,, 0.

We need not exclude the cases where W7k falls on the boundary for some
k e Z(m), if we just replace ¢ by the adapted characteristic function .

This w is defined as follows:

(13.1)  wx)= lim vol(Sph{x, r) N P)/vol(Sph(x, r)).
r=+0

Here Sph(x, r) is the interior of a sphere with center x and radius r, and ““vol”’
stands for volume. Roughly speaking, w(x) expresses what percentage of the
volume around x belongs to the polytope P. In the exterior and in the interior
of P we just have w(x)=0(x).

For example, if P is a cube in 3-space, then w(x) =% on the faces, + on the
edges, and + on the vertices.

14. APPLICATION TO BEATTY SEQUENCES

Let us take m=2, n=1, and apply section 13, where P is the interval on the
real line with end-points y and y+1/a. (y and « are real parameters). The
adapted characteristic function w satisfies

wx)=1 (y<x<y+1/0),
w(y)=w(y+1l/a)=1,
w(x) =0 otherwise.

Furthermore we take

Iz/l T =/-1/0!\ R=/ 1\ U=/ \
d \0>’ =1 ) Ble) L)

s6 det (N)=1. The series {11.1) (with f replaced by w) turns into
(14.1) Y Y wtk-h/a)d,.

hel keZ

0
1
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Let us restrict ourselves to the case that a>1 and y¢Z—Z/a. So k—h/a
lies never on the boundary of P. For any given A, the number of k with
w(k—h/e)=1 is easily seen to be equal to [y+(h+1)/a]—[y+h/a]. So
according to (2.2) the series (14.1) represents Y p(h)dy,.

Its Fourier transform is eévaluated by specializing (12.4). We note that the
Fourier transform of our characteristic function w satisfies (Fw)(—k)=c(k)
(see (9.7)), so the Fourier transform of ¥ p(h)dy, is the limit of

(14.2) Y L Ny Fo)X—K)hnirsa-
keZ heZ

The only difference with (9.6) lies in the convergence procedure. Instead of
K— oo for the cut-off point of the sum we now have the smoothing index 1/v
tending to zero, like in (8.11).

15. ONE-DIMENSIONAL QUASICRYSTALS

We get one-dimensional quasicrystals if in section 10 we take n=1. We can
admit any m>1, but here we shall just take m =2.

We take numbers a>1, J, vy, v, and

2=(ue) (a) v ()

The multigrid consists of two grids: Z and oZ — ad. We assume that these two
grids have no point in common. The multigrid is the union:

Cp=ZVUa(Z - ).

Let us investigate the meshes. Every mesh is indexed by a vector k with
E(k)#9 (section 10). This k is a column with entries k;, k, (both integers).
There are two kinds of meshes, according to whether the right end-point lies
in Z or in a(Z — 9).

(i) If the right end-point is in Z then that end-point is k;, and the next
point of a(Z — ) to its right is a(k,—J). Hence

(15.1)  alky—-1-8) <k <a(k,—9).

@) If the right end-point is in a(Z — J) then that end- pomt is a(k,—0), and
the next point of Z to its right is k. Hence

(152) k1—1<a(k2—5)<k1.
In both cases we deduce
(15.3) ak,—8)—a<k<alk,—0d)+1.

We note that k; + k, increases by 1 if we pass from a mesh to the next one. So
if we put k;+k,—1=Xx then every x occurs just once. hlxmmanng ks frcmi
(15.3) we get

ki=[(x-0a/(e+ 1], ky=x+1-k;.
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Now we know all vectors that satisfy the mesh condition, and we can build
the Dirac comb of the quasicrystal:

(15-4) ng 6vlk, + 0ok,
Let us now specialize v, and v,. First we show what happens if rank
V'D)<1. Taking v;=1, v,= —a we get
viki+ k=1 +a)(| (x—da/(a+ )]~ (x+ Da/a+1)),

and this is bounded. This is a special case of theorem 10.2.
Next we take v;=1, 0,220' For any yeZ, the number of xeZ with
[a(x—8)/(a+1)] =y equals

y@+/a+é]—|(y~(a+1)/a+d]
and this is 1+ g(y), where

g =|y/a+é|-|(-D/a+d].
So the Dirac comb of the quasicrystal equals

(15.5) y;l o,+ yé}z q(¥)oy,

and here the second term is the Dirac comb of the Beatty sequence q.
Next we take a general v,€7Z, v,#0 and v;=v,+ 1. Then

Ulk1+l)2k2= I_,Bx—l-|,

where f=v,+a/(a¢+1), A=—-vy+da/(a+1). If v,>0 we have f>1, and
[ Bx—A7] runs through the set of all integers z where the Beatty sequence

L +2)/8] - (A +z-1)/B] (zeZ) .

takes the value 1 (see [4], theorem 5.3). It follows that the Dirac comb of the
quasicrystal is just the Dirac comb of that Beatty sequence.

By suitable choice of v, and « we can get every Beatty sequence this way.

The positive values of v, take care of the intervals (1,3/2), (2,5/2),
(3,7/2), ... for B. In the case that v, <0 we rather take —x as the parameter
running through 7, and = —v,—a/(a+1). This covers the intervals (3/2,2),
(5/2,3)..... The missing points (multiples of 1/2) need not be considered for a |
Beatty sequence, since they are not irrational.

16. QUASICRYSTAL SYMMETRY
We shall devote some attention to the question how symmetries of a quasi-

crystal reflect in symmetries of the Fourier transform.

First we change our notation: instead of the vector y we shall use the vector 6:
(16.1) O=yp+¢&, where (7=, 14, ..., ).

In order to study symmetry, we introduce some transformations.
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If & is some positive integer, if A € R(h,}), and fis a real-valued function on
R(h), then &, f is the function defined by

(16.2) (24X =f(Ax) (xeR(h).

From now on we assume that 4 is non-singular.
If S is a subset of R(k), and s is its characteristic function, then we note
that

(16.3) Paxs=xa-'s
(A™'S is the set of all 4™ 'x with x€S).
If v e R(#4) then the delta function at v transforms like this:
(16.4) |det (4)|-P40,=04-1,-
As to the Fourier operator ¥ (on S*) we note that
(16.5) @ ,-rF=|det (4)|FD,.

We now first study the meshes of section 10. The mesh determined by the
vector k € Z(m) can be denoted by E(k, D, 0): it is the set of all ze R(n) for which
u € Du(m) exists with Dz+ 6+ u=k. Here Du(m) is the set Cu(m) — £, which is
symmetric with respect to the origin.

Let the matrix 4 € M(im, m) now be a signed permutation: it is non-singular,
and in every row it has just one non-zero entry, which is always either 1 or —1.
This A leaves Du(m) invariant as well as Z(m). We easily obtain, if ee M(n, n)
is non-singular, ‘

(16.6)  E(k, D, 0)=eE(Ak, ADe, A0).

For the characteristic function o of (10.9) we write gy, ¢. If A€ M(m,m) is a
signed permutation we have

(16.7)  owe=0CaT™w,a ‘o>

and for any non-singular ¢ € M(m—n,m—n)

(16.8) P.ow,0=0wc T,0-

We also indicate what happens to ¥, W, N, R, U under transformation. Let
A eM(m,m), beM(n,n), ce M(m—n,m-—n), all non-singular. Let V;, W,
Ny, Ry, U, be given by

V1=AVb, Wl —-——AWC, N1=AN<3 (Z>,

R,=A"TRb"T, U=A""Uc".

Then we have the same situation all over again: V; and W, together form Ny,
and likewise R, and U, together form Ny T,

Let us now list some transformations of the sum (11.1). We denote it by
ALV, W):
(16.9) AUV, W)= T fIFK)Syn.

keZ(m)
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If He M(m, m) is non-singular with integer elements, it leaves Z(m) invariant,
and we have

(16.10) A(LHV,HW)=A(f,V, W).

If be M(n,n), ce M(m— n,m—n) are non-singular, then
(16.11) |det (B)|-A(f, Vb, We) = Dy-1A(Drf, V, W).
Theorem 11.1 can be written as

(16.12) ZA(f, V, W)=|det (N)|"'A(Ff, R, - U).
Finally we express the fact that (10.6) equals (10.11):
(16.13) ) Oye=4Qw,0 V, W).

ke Z(m)|E(k, D, 6) +8
In stylized form (not bothering about the kind of convergence) we express
(12.4) as

(16.14) FA(ow,q V, W) =|det (N)|~'A(Fow 4 R, - U).

We are now fully equipped for the study of quasicrystal symmetry. The word
symmetry can be taken in a wide sense: sometimes there is no symmetry in the
sum but just in the set of deltas. The series on the right of (16.14) contains
deltas at the elements of the set R7Z(m), i.e., the set of all R7k with ke Z(m).
This set can be called the spectrum of the quasicrystal pattern.

As an example of the study of symmetry we present

THEOREM 16.1. If AeM(m,m) is a signed permutation, if beM(n,n),
e € M(n, n) are both non-singular, and if D and V satisfy

(16.15) D=ADe, V=AVb
then the spectrum R7Z(m) satisfies

(16.16) B(RTZ(m))=R7Z(m).

The proof is a direct consequence of the material above. We remark that
A=A"T since signed permutations are always orthogonal. We can also prove
(16.16) directly; just some matrix calculus shows that bR7=R7A (the matrix
A need not be a signed permutation for this; orthogonality suffices).

The examples that first come to mind are those with V=D, e=b, b ortho-
gonal. For the “‘icosahedral case’” we take m=6, n=3; vy,..., ¢ arc unit
vectors along the 6 main diagonals of an icosahedron. And & is an orthogonal
matrix that' leaves the icosahedron invariant, inducing a signed permutation
among the v’s; The result is that the spectrum is invariant under the icosahedral
group.
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17. APPROXIMATE EQUALITY AND APPROXIMATE ALMOST PERIODICITY OF
QUASICRYSTALS

We recollect from section 10 that n, m, D, V, y define a multigrid as well
as a crystal pattern, and that to any k with k € Z(m) there corresponds a mesh
of the multigrid (i.e., E(k)#0) if and only if z € R(m) exists such that k—Dz—y
lies in the cube Cu(mn). The point of the crystal pattern corresponding to such
a vector k is V7k. The crystal pattern will be denoted by Cp(y).

To every mesh E(k) we can associate a positive number, to be called the
tolerance of the mesh. The mesh is the set of all ze R(n) that satisfy (10.1) for
all j, and the tolerance is the largest number # such that there still exists a
z € R(n) with

(17.1) ki-1+n=d,+y<k—n

for all j.

We can also speak of the tolerance of a point of the crystal pattern: it is just
the tolerance of the mesh it originates from.

Throughout this section we shall assume that the multigrid is non-singular,
i.e., that nowhere more than # grid hyperplanes pass through a point. Singular
grids require a little more care (there we have to apply ‘‘infinitesimally small”’
distortions of the multigrid (see [5], section 12)).

Crystals patterns with different values of y can sometimes be approximately
equal. This can be based on the following theorem of Kronecker (see J.F.
Koksma [15], p. 83):

THEOREM 17.1. Let n and m be positive integers, let De M(m,n) and
B € R(m). Then the following conditions (i) and (ii) are equivalent:

(i) For every positive ¢ there exists a vector u € R(n) and a vector p € Z(m)
such that [Du—g—-p|<e. 7

(i) Every ke Z(m) with h"D=0 satisfying "B Z.

Assuming that B satisfies (ii), and considering two different vectors y and y’,
with p’=y+ B, we shall show that the crystal patterns Cp(y) and Cp(y’) are in
a certain sense approximately equal.

Let & indicate a point of Cp(y), and let 7 be its tolerance. Then we can take
any ¢ with 0<e<y, and u, p according to (i). Taking z according to (17.1)
we obtain that k—Dz—y—ve Cu(m) for every vector v with |v|<#z. With
v=Du— B —p we infer that (k + p) — D(z + u) — y’ € Cu(m). It follows that in the
multigrid with parameter y’ the mesh E(k+p) is non-empty (actually its
tolerance is at least 7 — ¢). This means that by the shift ¥ 7p the crystal pattern
Cp(y) turns into Cp(y’) as far as the points in Cp(y) with tolerance >¢ are
concerned-.

If we have any finite portion of €p(y), we can take ¢ less than all tolerances
in that portion. Cheosing p accordingly, we find that after a shift ¥7p this
whole portion occurs in Cp(p’). It is in'this sense that we say that Cp(y) and
Cp(y’) are approximately equal.
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Sometimes (ii) holds for all B, and then we can say that all Cp(y)’s are
approximately equal to Cp(0). But this is roughly speaking: it forgets about the
little singularity troubles.

Let us take a few examples. First we take the pentagrid case of [5], where
n=2, m=5. The vectors d,,...,ds are five unit vectors forming a regular
5-star. Now the only possibilities for 4 € Z(5) with hTD =0 are the multiples of
the vector with all its entries equal to 1. Kronecker’s theorem now shows that
if y satisfies y, + ---ys€Z then Cp(y) is approximately equal to Cp(0).

In our next example, we take n=3, m=4, and the vectors wy, ..., w, are the
unit vectors leading from the center of a regular tetrahedron to the four
vertices. Again it is easy to check that the only vectors s € Z(4) with hTw=0
are the multiples of the vector with all its entries equal to 1. So the answer is
as in the previous example: y, + -+ + y4 € Z guarantees approximate equality of
all Cp(y)’s.

In the icosahedral case we have n=3, m =6, and the vectors w; are taken in
the directions of the six main diagonals of an icosahedron. It is not hard to
check that now the only vector p e Z(6) with pTW=0 is the zero vector, and
therefore all Cp(y)’s are approximately equal.

We used the Kronecker theorem in order to compare quasicrystals with
different values of y. Another matter is the fact that all quasicrystals show a
certain kind of self-repetition which we shall refer to as approximate almost
periodicity. It is based on the following theorem.

THEOREM 17.2. If £>0 and if O(g, D) is the set of all ze R(n) such that the
distance of Dz to the set Z(jn) is less than &, then Q(g, D) is relatively dense in
R(n), which means that there exists a number r>0 such that for every ce R(n)
there is a point zo€ Q(g, D) with |zo—c|<r.

PROOF. The theorem follows at once from the fact that

1 Y cos (2n(d}, 2)
<j=m
is a uniformly almost periodic function of z.

For the theory of uniformly almost periodic functions of a vector variable
we refer to Besicovitch [2] ch. 1,12.

In [6] there is an alternative proof of this theorem (and of some generali-
zations) independent of the theory of almost periodic functions.

We shall apply theorem 17.2 to quasicrystals. We take 1<=n<m, D and V
as in section 10 (with (10.12)), and we consider the multigrid as well as the
crystal pattern they generate (see (10.2)). In order to facilitate the discussion,
we still assume that nowhere more than »n grid hyperplanes pass through a
point.

We take any number ¢ >0, and fix r according to theorem 17.2. Next we take
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ce R(n) arbitrary, and we take zy€ Q(¢, D) with |zy—c|<r. By the definition
of Q(g, D) we can find x, € Z(m) with | Dzy—xo| <é&. We shall now show that,
in a certain weak sense, ¥ 7x, is a kind of period of the crystal pattern. '

Let k € Z(m) satisfy the mesh condition E(k)#0, and let n be the tolerance
of the mesh E(k). Assume that #>¢. We can take z such that k—Dz—y—
—veCu(m) for all v with |v|<#. Putting k’=k+x,, we claim that k¥’ again
satisfies the mesh condition, and that its tolerance is at least 7 —¢&. That mesh
contains the point z+ 24, and with v = Dz, — X, we easily see that k"' — D(z +z) —
—y € Cu(m).

If keZ(m) satisfies the mesh condition, then VTk is the corresponding
point. Assuming that it has tolerance #, and 7>¢, the point VI(k+x,) again
belongs to the crystal pattern, and its tolerance is at least 7 —¢&. So VTxyis a
kind of period: if a point of the crystal pattern has tolerance > then a shift
over VTx, leads to another point of the crystal pattern.

If we take any finite subset of the crystal pattern, we can take & less than all
tolerances of the points of that subset. If 2y, X, are chosen as above, then our
V7x, produces a new finite subset of the crystal pattern, congruent to the
old one. ‘ )

It is easy to see that, for given £>0, the set of all VTx, is relatively dense.
We have |Dzy— x| <€, so VT Dzy— V7x, is bounded. The V'Dz,’s are rela-
tively dense, since the zy’s are relatively dense, and VD is non-singular.
Therefore the Vx’s are relatively dense. It is because of this that we call the
quasicrystal approximately almost periodic.
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