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A Quasicrystal for Cherry Valley 
 
A visually rich and complex quasicrystal sculpture is quickly assembled with relatively 
few standard parts of only three types. 
 

  
 
 
 
 
Quasicrystals fill space with a non-repeating pattern; parts repeat, but not at regular 
intervals. In two dimensions, the pattern might be a Penrose tessellation, although other 
similar patterns could also be in this category. In three dimensions, the units are two 
skewed cubes, and in a lattice structure these can be made with rods and dodecahedral 
nodes.  All the rods are of the same length; all the nodes are the same and in the same 
orientation; all the faces of the lattice are the same rhomb, and can be filled with identical 
plates.   
 
For the Cherry Valley Sculpture Exhibition of 2012, I made a quasicrystal sphere.  It has 
a triacontahedral hull – a 30 sided figure that derives from the fusion of a regular 
dodecahedron and a regular icosahedron. Nested inside my hull is a rhombic icosahedron 
and nested inside that is a rhombic dodecahedron.  
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Even though all the parts are standard, the sculpture has 2-fold symmetry (of squares),  
 

 
 
 
 
3-fold symmetry (of triangles and hexagons), 



 
 
and 5-fold symmetry (of star pentagons), depending on the location of the viewer.   
 
 
 

 
 
 
This wonderful complexity of aspect is also apparent in the shadows that the sculpture 
casts.  



 

 
 
 
 
Structural considerations 
 
As an artist, I am primarily concerned with the visual properties of quasicrystals; for a 
wider application to architecture, however, the structural and rigidity properties of these 
structures must be understood. Two-dimensional and three-dimensional quasicrystals are 
composed of rhombs, which are not in themselves rigid. Solid dodecahederal nodes, such 
as I use, do provide some rigidity, but something must be done to establish an essential 
stability. In 1990 I began to study three techniques to made quasicrystals rigid: stress-
skins, the triangulation of some rhombs, and quasicrystals as pate structures. 
 
 For the first option, I initially covered a quasicrystal ball with canvas pieces that were 
then seized with a plastic medium that shrank the material.  Mathematical quasicrystals 
were first proposed as a model of a fluid because load applied to one part of the structure 
is not translated through the crystal but rather dispersed to the skin. While the surface 
canvas was tight, the canvas-covered quasicrystal ball was surprisingly strong – I sat on 
it, but as expected, the structure became flexible when the stress-skin loosened. The 
structural equivalent of a stressed-skin is shown below: every exterior rhomb is crossed 
by a turnbuckle placing the “skin” in tension. Again, the ball is rigid. Unfortunately, not 
many architectural designs can incorporate a continuous, complex, and positively curved 
skin, with a quasicrystal interior. 
 



 
 
 
My fiend Ture Wester, an engineer well known to this audience, has studied the second 
structural strategy: triangulating the rhombs with rigid members. Since these triangles ruin 
the visual properties noted above, it is necessary to discover the fewest possible bracing 
members. In the two-dimensional case, Wester noticed ribbons of adjacent cells that all 
have parallel edges. In fact he noticed five sets of these ribbons, or one set of ribbons 
rotated at 72 degrees around a central point.  These sets of ribbon-lines are a hidden 
structure of the quasicrystal that were first described by Robert Amman, and called 
“multigrids” by Nicolas deBruijn, 1980, who used them in his algorithm to generate 
quasicrystals.  (In general, quasicrystals are projections of regular cubic cells from higher 
dimensional space – these Amman lines or multigrids are residues of the higher 
dimensional rectilinear grids.) Thus, structural considerations of physical quasicrystals are 
deeply related to their hidden mathematical structures. 
 
Wester found that these ribbons of cells with parallel edges allowed him to treat the 
pattern as if it were a rectangular grid. As in such rectangular grids, once a ribbon is fully 
braced, the rigidity can be extended by the rule “one new node is fixed by two new bars.” 
Following this well-known rule and its corollary, Wester could stabilize the pattern below 
with just 14 members: 15 total ribbons minus 1.  
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Wester’s analysis of the ribbon sub structure. 
 

 
 
Wester’s minimal bracing of 14 bars. 
 
 



Sadly, Ture died while still fairly young, and before he completed his examination of the 
three-dimensional case – the information really needed for architectural applications.  For 
a large quasicrystal sculpture built in Denmark of 700 nodes, my engineering-candidate 
assistants and I intuitive placed acrylic plates to function like bracing bars, as also seen in 
the Cherry Valley quasicrystal. Like Wester’s examination of the two-dimensional grid, 
we found that relatively few plates-as-bars were needed to make large aggregates stiff 
enough to be lifted up by a crane from a single point. (see YouTube video: 
http://www.youtube.com/watch?v=dFpinVoeNOc )   However we still need a theoretical 
understanding of quasicrystal lattices, and since there are Amman structures in a three-
dimensional quasicrystal, then called Amman planes, an analogous theory should be 
possible. 
 
George Francis: your discoveries etc here 
 
I also investigated making quasicrystals with plates, without nodes or rods. There is a 
wonderful economy of means with plate-structure quasicrystals: every plate is the same 
shape. It is a rhomb with an acute angle of tan τ: 1, or approximately 63.44 degrees. If the 
plates are to be sub-assembled into skewed-cube cells or half cells for subsequent 
assembly, then the plates could be beveled to ease that assembly.  Only two sets (here 
called A and B) of beveled plates are necessary. The dihedral angles of bevel for plate A is 
as follows: 54 degrees for edges leading to the acute angles and 36 degrees for edges 
meeting at the oblate. For plate B, 18 degrees at the oblate and 72 degrees at the acute. 
Amazingly, plates of the same type so cut will only assemble into the fat and skinny 
three-dimensional cells that are the basic building blocks of a three-dimensional 
quasicrystal.  Here again there is an economy that speaks to the deep mathematical 
structure of quasicrystals: the patterns of the bevels are exactly the pattern of the well-
known local matching rules for the two-dimensional quasicrystal, the Penrose pattern 
(alas, not fool-proof rules.)   
 

 
 
Plate A is on the left.                                                   Plate B is on the right. 
 
Consider again the quasicrystal ball with turnbuckles. As mentioned, the triacontrahederal 
hull is derived from a dodecahedron and its dual an icosahedron:  the twenty vertices of 



the dodecahedron and the ten vertices of the icosahedron are kept, the edges (they bisect 
in this scaling) are discarded, and then all the thirty vertices are connected by new edges 
of equal length. In the photo below, one can see that the turnbuckles re-establish the 
dodecahedron with its pentagonal sides. These pentagons can neither deform nor rotate 
due to neighboring turnbuckles. And therefore, the quasicrystal ball is functionally a plate 
structure.  As Wester has repeated reminded us in print, a plate-structure dodecahedron is 
stable because three pentagonal plates meet at each  
corner. 
 

 
 
 
 
Philosophical considerations 
 
The 2D Penrose pattern is a special case of a three-dimensional quasicrystal: the case 
when the cells are turned so that one set of members is completely foreshortened to non-
existence.  But as we have seen with the 3D bevels being identical to the 2D matching 
rules, such a projection retains the information of the higher dimensional version, just as 
quasicrystals in general retain the information of the cubic lattices when projected.  This 
is precisely the information needed to understand their optimal mathematical and physical 
structure. Further, the general insight that the projected figures retain essential 
information from higher-dimensional regular grids is the secret of their mystery. Against 
all intuition, quasicrystals retain their perfect tessellation, their uniformity of edges, 
uniformity of node and node orientation, and their long-range orientation that was part of 
their cubic, pre-projected state. Uniformity of parts makes them ideal candidates for 
structures; special projection generates their visual richness. Deep inside the algorithm of 
their construction are the secretes of the rigidity, and thus the path to their use in 
architectural structures. 
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