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Concept of a cohesive energy in a solid

E
kinetic energy per electron
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The curve £ (r ) represents the lowest energy of electrons with the wave vector k=0 while the curve
€4in FEpresents an average kinetic energy per electron. g, represents the ionization energy needed
to remove the outermost 3s electron in a free Na metal to infinity and ¢ is the cohesive energy.
The position of the minimum in the cohesive energy gives an equilibrium interatomic distance r,.



Cohesive energies (kJ/mole) of elements in periodic table

Li Be B C N o F Ne
159 | 322 561 | 711 | 477 | 251 | 84 | 21
Na | Mg Al Si P S Cl Ar
108 | 148 322 | 448 | 332 | 277 | 135 | 1.7

K Ca Sc Ti Vv Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
91 176 | 379 | 469 | 511 | 396 | 288 | 414 | 424 | 428 | 338 | 130 | 269 | 374 | 289 | 206 | 118 | 11

Rb | Sr Y Zr | Nb | Mo | Tc [ Ru | Rh | Pd | Ag | Cd In Sn | Sb | Te |
83 | 164 | 423 | 610 | 720 | 658 639 | 555 | 380 | 286 | 112 | 247 | 301 | 259 | 193 | 107 | 15

Cs | Ba| La| Hf | Ta | W | Re | Os Ir Pt | Au | Hg | TI Pb | Bi | Po | At | Rn
80 | 179 | 434 | 611 | 781 | 837 | 782 | 783 | 670 | 565 | 365 | 67 | 181 [ 197 | 208 | 144

Fr Ra Ac

Ce Pr Nd Pm Sm Eu Gd (Tb Dy |[Ho [Er [Tm [Yb [Lu
460 373 323 203 174 (399 393 297 293 322 247 151 427

Th [Pa [U Np Pu Am Cm Bk [Cf [Es [Fm Md | No| Lr
572 [527 (522 440 [385 251

Cohesive energy represent an energy needed to separate all atoms in a solid at absolute zero into the
assembly of neural atoms. The values underlined refer to those either at 298.15 K or at the melting point.
The values are in the units of kd/mole converted from the values in the units of cal/mole. C.Kittel,
“Introduction to Solid State Physics”, (Third Edition, John Wiley & Sons, New York, 1967), Chapter 3.



The number of intermediate phases increases, as AH at x;=0.5 increases.
Neighboring phases are competing within +10kJ/mole.

Heat of mixing, AH/ kJ.mol-!
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The number of intermediate phases increases from unity up to five as the heat of mixing increases in a negative

direction from zero, -37 and -75 kJ/mole in A-B binary system. [F.R.de Boer, R.Boom, W.C.M.Mattens, A.R.Miedema
and A.K.Niessen, “Cohesion in Metals”, (North-Holland 1988)]



Electron theory of metals is an essential ingredient to deepen
understanding of an alloy phase competition

kp =

1/3
5
Va
k.
ela: electron concentration defined as an average valency of constituent
atoms in an alloy.

Construction of the Fermi sphere. The reciprocal space is quantized in units of 2x/L in the k,-,
k,- and k,-directions and is made up of cubes with edge length 2n/L as indicated in the figure.
Electrons of up and down spins occupy the corner of each cube or integer set (n,, n,, n,) in
accordance with the Pauli principle while making nX2+ny2+nz2 as low as possible. The sphere
with radius kg represents the Fermi sphere.




E-k relations (dispersion relation) Three re prese ntations for the

E description of the electronic structure
/
\ E. / Density of states (DOS)
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Departure from the free electron model
0 -k Nature tries to lower the electronic energy of a system

by expelling electrons at the Fermi level. This is nothing
but the formation of a true or pseudogap at the Fermi
level, as indicated above.




enough to stabilize a given phase among competing phases

@® psuedogap immediately below E
O pseudogap near the bottom of the valence band

M R

Examples to stabilize a system by formation of (pseudo)gap at E.

A structurally complex phase by increasing the number of
atoms in a unit cell

A superconductor by forming the superconducting gap

A quasi-one-dimensional organic molecular metal by
introducing new modulations through deformation of the
lattice. This is known as the Peierls transition.




What about the mechanism for the formation of the pseudogap?

Covalent bondings=orbital hybridization between neighboring atoms
Metallic bonding (FsBz interaction)=long-range interaction throughout a crystal

Orbital hybridizations Fermi surface-Brillouin zone
(FsBz) interaction

Anti-Bonding energy level |LUMO
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Orbital hybridization effect would occur
not only in crystals but also in non-
crystalline systems like liquid metals

and amorphous alloys.
Electrons having the wave length A resonate with a

set of lattice planes with lattice spacing 2d.

The FsBz interaction is unique in well-ordered
systems like crystals and quasicrystals
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The concept of the Brillouin zone

Stationary waves are formed and an energy gap opens, when the electron wave length
matches the lattice periodicity.
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The Brillouin zone is a polyhedron bounded by
planes, which are formed by perpendicularly
bisecting the relevant reciprocal lattice vectors
like G=<110> in the reciprocal space. An energy
gap opens across each zone face.

I. bce, N=2, dodecahedron with 12 zone faces




The Brillouin zone of Three Complex Alloy Phases

II. 1/1-1/1-1/1 approximant, N=160, polyhedron with 84 planes
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The larger the number of atoms in the unit cell, the more the number of zone faces, across
which an energy gap opens. This in turn results in a deeper pseudogap on the DOS. As a
result, the electronic energy can be more efficiently lowered by increasing the number of
atoms in the unit cell.




What is the Hume-Rothery electron concentration rule ?

Hume-Rothery (1926) pointed out a tendency for a definite crystal structure to occur at a
particular elecfron concentration e/a. Mott and Jones (1936) made its first interpretation in
terms of the Fermi surface-Brillouin zone interaction on the basis of the nearly free electron
model.

N.F.Mott (1905- 1996) H.Jones (1905-1986)

William Hume-Rothery (1899-1968)

There exist two different definitions for electron concentration:

el/a versus VEC



Various physical properties fall on a universal curve, when plotted
against the VEC (nhumber of electrons per atom in the valence band)

Slater-Pauling curves
Saturation magnetization against VEC
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Electron concentration in the Hume-Rothery electron concentration rule is not
VEC but should be e/a (averaged number of valencies of constituent atoms).
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Model of Jones for the interpretation of the Hume-Rothery
rule on o/ phase transformation in Cu-Zn system

Brillouin zone of fcc {110} Ep
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H.Jones, Proc.Phys.Soc. A49 (1937) 250

Difficulties in model of Jones
Discovery of the neck in the Fermi surface of fcc-Cu by Pippard in 1957

Ignorance of the Cu-3d band

Hume-Rothery commented in 1961 that “the work of the last ten years has made the theory of alloy

structures appear less satisfactory than was the case twenty-five years ago. It is now definitely
established that the assumption of a spherical Fermi surface for pure Cu is quite unjustified...”.




Current understanding of fcc/bcc phase transformation of Cu on the
basis of the first-principles FLAPW electronic structure calculations in
combination with density functional theory

Total energy of a system at absolute zero
W.Kohn and L.J.Sham, Phys.Rev. 140 (1965) A1133

U=Ye - ff AL )drdr +fn(r)[ (n(r))—uxc(n(r))]dr

, r-r

average interaction energy €Xchange-correlation energy
of electrons known as the
Hartree term

N A
v V
One-electron band structure electron-electron interaction term

energy due to both valence and
core electrons

€, is the solution of the effective one-electron Schrodinger equation of a system given by

/S
[_%V + V0 (1) |1;(1) = £9,(T)
E
U, ionce = | D(E)E- E,)dE wmm) This is a quantity evaluated by Jones and
Ebottom corresponds to the contribution from the

valence electrons in the first term.



due to contact with {111} zone plan

with {200} zone planes

F due to overlap across
Energy E (eV) {111} zone planes
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Energy (V)

Fcc-Cu Bce-Cu
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The first-principles band calculations prove that the
ignorance of the Cu-3d band was a vital failure in

the model of Jones. This led him to a wrong location
of van-Hove singularities and overestimation of
their sizes in both fcc and bcc Cu.
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—— DOS of bce-Cu
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You can see that the van-Hove singularities are negligibly small in both fcc- and bcc-Cu.
The band structure energy difference arises essentially from the difference in Cu-3d
bands and amounts to about 10 kJ/mole in favor of the bcc structure.




The stability of fcc Cu is correctly predicted, only if the electron-electron term is
properly evaluated.

AUzubcc'ufcc
fcc-C bcc-C
. . (kJ/mole)
lattice constant (A) 3.6048 2.8639
total energy U (kJ/mole) -4336455.852 -4336453.49 +2.37 U, . >U,.
UEIENEEA0EINE SUTLEILITE 5257.9289 5226.4769 31.45
energy U, (kdJ/mole)
chc < Ufcc
core electron energy Ueore | 5483799 964 2483807.338 7.37
(kJ/mole)
Ueiectron-clectron (KJ/mole) -1857913.837 -1857872.647 +41.19 U, >U,,

U= Ee _{ If n(r)n(r’ )drdl' +fn(r)[£XC(n(r)) MXC(n(r))]dr}

r-r
=U,+U

core electron electron

N

AU =(-31.45)+(-7.37) +41 119=+2.37 kJ/mole



As is clear from the argument above, the interpretation of o/
phase transformation in the Cu-Zn system is still far from our goal.

$

We believe the situation in complex alloy phases

to be different from that in fcc and bcc Cu,
where van-Hove singularities are too small to
affect the total energy.




A pseudogap across the Fermi level plays a key role in
stabilizing a complex alloy phase

3 Al-Mn approximant
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Integrated Density of States

T.Fujiwara, Phys.Rev.B 40 (1989) 942

---First-principles LMTO band calculations---
The origin of the pseudogap was attributed to the Mn-3d/Al-3p orbital hybridizations



We are interested in e/a-dependent phase stability

Orbital hybridizations

Anti-Bonding energy level |LUMO

F

Bonding energy level HOMO

Orbital hybridization effect would occur
not only in crystals but also in non-
crystalline systems like liquid metals
and amorphous alloys.

FsBz interaction
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Resonance of electrons having the wave length A
with a set of lattice planes with spacing 2d.

FsBz interaction is unique in well-ordered
systems like crystals and quasicrystals
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An increase in the number of atoms in unit cell accompanies an increase in
Brillouin zone planes

I. bee, N=2, dodecahedron with 12 planes IV. 1/1-1/1-1/1 approximant, N=160, polyhedron with 84 planes

The gamma-brass is complex enough to produce
a sizeable pseudogap at the Fermi level but is
still simple enough to perform the FLAPW band
calculations with an efficient speed.




Gamma-brasses with the space group P43m and 143m

(b)
Inner Tetrahedron (IT) Octahedron (OH)

26-atom cluster

The 26-atom cluster forms either bcc or CsCl-structure and contains 52 atoms in the unit cell.



Our objective is to explore if all gamma-brasses listed here

are stabilized via the same mechanism at e/a=21/13
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Empirical Hume-Rothery e/a rule for

gamma-brasses in the past

gamma- e/a gamma- e/a gamma- e/a
brass brass brass
AgsCdg | 21/13 Cugln, 21/13 Ni,Be,, ?
AgsZng | 21/13 Aggln, 21/13 Ni,Cd, ?
CusCdg | 21/13 Augln, 21/13 Mn,Zn,, ?
CugZng | 21/13 Ni,Zn,, 16 Pt,Zn,, ?
Au,Cdg | 21/13 Fe,Zn,, 1.6 AlgVg 1.46
AugZng | 21/13 Co,Zn,, 1.6 Mn,ln ?
CugAl, 21/13 Pd,Zn,, 1.6 Ao Li 21/13
[
CusGa, | 21/13 Ir,Zn, ? o ?

In literature, all isostructural gamma-brasses

above had been implicitly assumed to be

stabilized at e/a=21/13 or the valency of the
partner element to be forced to take a value
to fulfill the total e/a equal to 21/13.




DOS of CugAl, gamma-brass

3.0 I I I T T T I I
CugAl, gamma-brass 4
25+ | —
!

©
E , / seudoga
©
> |
310k L .
= I/ Cu-3d

0.5 M, A, -

M ¢ N
0.0 &’/xl" | | | | |

-10 -8 -6 -4 -2 Ec 2 4
Energy (eV)

The FsBz interaction is really responsible for the formation of the pseudogap?




Principle for the extraction of the FsBz interaction from the first-principles
FLAPW (Full-potential Linearized Augmented Plane Wave method) band calculations

Adoption of spherically symmetric muffin-tin potential

oy

k k .
rsa  xg)=3 [Azmuz(Ef,r)+Bzmuf(Ez,r)]Yzm(9,(P) A
...... - muffinitin sphere

r=a Xk (r)=exp(ik-r)

T,Uk(E,r)= E C(k+thl)Xk+thl(Ear)
G ki

Xk+G (E,r): FLAPW basis function

l])k(E,I')=GEC k+thl)eXp[i(k+thl)-r] (1)
l hkl [

Er (1,1,0)

1
2
FLAPW-Fourier Analysis

We extract the electronic state k+G, ,, having the largest Fourier coefficient in wave

function (1) at symmetry point N with the energy eigen-value near the Fermi level. This
is nothing but the extraction of the set of lattice planes resonating with electron waves.



Cu;Zng and CugAl, gamma-brasses in group 1




E-k dispersions and DOS derived from FLAPW for Cu.Zn; gamma-brass
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R.Asahi, H.Sato, T.Takeuchi and U.Mizutani, Phys.Rev. B 71 (2005) 165103 ‘/’



E-k dispersions and DOS derived from FLAPW for Cu,Al, gamma-brass
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FLAPW-Fourier spectra for the wave function outside the MT sphere at

the point N at energies immediately below the Fermi level
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The Fourier coefficient is extremely large at G?=18. This implies that electron waves near

the Fermi level exclusively resonate with the set of {411} and {330} lattice planes with
G2=18, resulting in the formation of the pseudogap



Evaluation of the e/a value by means of the FLAPW-Fourier method
---Hume-Rothery plot---

We have so far limited ourselves to the extraction of the largest plane wave component of the FLAPW wave
function only near the Fermi level and only at the symmetry point N.

This technique is now extended to a whole valence band. We need to do this only in the irreducible
wedge of the Brillouin zone. The wedge is divided into 200 elements and the electronic state (k+G)
having the largest Fourier coefficient for the wave function at energy E in the i-th element is
extracted. This is done for all elements over i=1 to 200 and an average value of (k+G) ,, IS
calculated. In this way, a new single-branch dispersion relation E-(k,+G) ,, for electrons extending
outside the MT sphere is derived in the extended zone scheme.

N=200
‘k + G‘E = YW, ‘k + G‘E The variance ¢ must be small to validate this approach.
l l
i=1

Once the E-(k+G) is determined, the Fermi diameter 2k. is obtained from the value of 2(k+G) at E.

The e/a is immediately calculated by inserting the
Fermi diameter 2kg into the relation below:

JU 3
g (/@) 1pra1 = —(2kp)
: total F
3N
2ducible wedge N=52:number of atoms in the unit cell
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Studies of TM,Zn,, (TM=Ni, Pd, Fe, Co) gamma-brasses in group 2

Ekman (1931) studied the TM-Zn gamma-brasses and proposed that they obey
the Hume-Rothery electron concentration rule with e/a=1.60, provided that the
valency of the TM element is zero.

W.Ekman, Z.Physik.Chem. B 12 (1931) 57




FLAPW-derived E-k relations and DOS for Ni,Zn,, gamma-brass
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FLAPW-Fourier spectra just below and above the
pseudogap in Ni,Zn,, gamma-brass
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FLAPW-derived E-k relations and DOS for Pd,Zn,; gamma-brass
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DOS (states/eV.atom)

FLAPW-Fourier spectra just below and above the
pseudogap in Pd,Zn,, gamma-brass
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FLAPW-derived E-k relations and DOS for Co,Zn,, gamma-brass
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FLAPW-Fourier spectra just below and above the
pseudogap in Co,Zn,, gamma-brass
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The G2=18 resonance still
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level in Co,Zn,,.
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FLAPW-derived E-k relations and DOS for Fe,Zn,, gamma-brass
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FLAPW-Fourier spectra just below and above the
pseudogap in Fe,Zn,, gamma-brass
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Gamma-brasses in group 1 obey the Hume-Rothery e/a law with e/a=21/13

CugZng CugAl, Ni,Zn,, Pd,Zn,, Co,Zn,, Fe,Zn,,
A pseudogap
formed below E
|G|? deduced
from the FLAPW- 18 18 18 18 — —
Fourier method
(2k¢)? deduced
form the H-R plot 18.47 18.45 19.36 19.27 19.5 20.0
(e/a)oq 1.60 1.60 1.72 1.70 1.73 1.80
(ela)qy, 0.96 0.97 0.15 0.07 0.26 0.70
VEC 11.6 8.5 11.7 11.7 11.538 11.385
group (1) group (2)

The Hume-Rothery stabilization mechanism refers to the mechanism, in which a

pseudogap is formed across the Fermi level as a result of electron waves resonating
with a particular set of lattice planes and thereby the particular e/a value is specified.




Summary for gamma-brasses in groups 1 and 2




