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2. What is the Hume-Rothery electron concentration rule?
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5. Why do we need the first-principles FLAPW band calculations?

6. Why have we chosen a series of gamma-brasses?

7. Hume-Rothery stabilization mechanism

8. Different stabilization mechanisms in Al8V5 and Ag5Li8 gamma-brasses

9. Stability mechanism in the Al-TM-Cu-Si (TM=Fe and Ru) approximants

10. 2kF versus Kp condition. Issues on VEC versus e/a. Which is more critical
parameter to discuss the phase stability of CMA phases?



The curve !o(r ) represents the lowest energy of electrons with the wave vector k=0 while the curve
!kin represents an average kinetic energy per electron. !I represents the ionization energy needed
to remove the outermost 3s electron in a free Na metal to infinity and !c is the cohesive energy.
The position of the minimum in the cohesive energy gives an equilibrium interatomic distance ro.

Concept of a cohesive energy in a solid

!c: cohesive energy

:ionization energy
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The number of intermediate phases increases from unity up to five as the heat of mixing increases in a negative
direction from zero, -37 and -75 kJ/mole in!"#$!%&'()*!+*+,-./!0F.R.de Boer, R.Boom, W.C.M.Mattens, A.R.Miedema
and A.K.Niessen, “Cohesion in Metals”, (North-Holland 1988)]

The number of intermediate phases increases, as "H at xB=0.5 increases.

Neighboring phases are competing within +10kJ/mole.

"H=0 kJ/mole

"H=-37 kJ/mole

"H=-75 kJ/mole

A B

H
e

a
t 
o
f 
m

ix
in

g
, 
"

H
/ 
kJ

.m
o
l-1



Construction of the Fermi sphere. The reciprocal space is quantized in units of 2#/L in the kx-,
ky- and kz-directions and is made up of cubes with edge length 2#/L as indicated in the figure.
Electrons of up and down spins occupy the corner of each cube or integer set (nx, ny, nz) in
accordance with the Pauli principle while making nx

2+ny
2+nz

2 as low as possible. The sphere
with radius kF represents the Fermi sphere.
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Electron theory of metals is an essential ingredient to deepen

understanding of an alloy phase competition

Fermi sphere

The free electron model
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e/a: electron concentration defined as an average valency of constituent

atoms in an alloy.



Departure from the free electron model

Nature tries to lower the electronic energy of a system
by expelling electrons at the Fermi level. This is nothing
but the formation of a true or pseudogap at the Fermi
level, as indicated above.

Three representations for the

description of the electronic structure

E-k relations (dispersion relation)

Fermi surface

Density of states (DOS)
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Width of energy gap, "E/ meV

psuedogap immediately below EF

pseudogap near the bottom of the valence band

A gain in the electronic energy amounts to several 10 kJ/mol, which is large

enough to stabilize a given phase among competing phases

Examples to stabilize a system by formation of (pseudo)gap at EF

1. A structurally complex phase by increasing the number of
atoms in a unit cell

2. A superconductor by forming the superconducting gap

3. A quasi-one-dimensional organic molecular metal by
introducing new modulations through deformation of the
lattice. This is known as the Peierls transition.

Kinetic energy increases in this direction
and becomes the maximum at the Fermi
level.
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Covalent bondings12rbital hybridization between neighboring atoms

Metallic bonding (FsBz interaction)13ong-range interaction throughout a crystal

!

b

<550>

2d~4 Å

$F~4 Å

Electrons having the wave length $F resonate with a
set of lattice planes with lattice spacing 2d.

What about the mechanism for the formation of the pseudogap?
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Orbital hybridization effect would occur
not only in crystals but also in non-
crystalline systems like liquid metals
and amorphous alloys.

Orbital hybridizations

The FsBz interaction is unique in well-ordered
systems like crystals and quasicrystals

Anti-Bonding energy level

Bonding energy level HOMO

LUMO

EF
Al-3p Mn-3d

Fermi surface-Brillouin zone

(FsBz) interaction



The concept of the Brillouin zone
Stationary waves are formed and an energy gap opens, when the electron wave length

matches the lattice periodicity.
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The Brillouin zone is a polyhedron bounded by
planes, which are formed by perpendicularly
bisecting the relevant reciprocal lattice vectors
like G=<110> in the reciprocal space. An energy
gap opens across each zone face.

{002}

{111}

II. fcc, N=4, truncated octahedron with 14 zone faces

G2=3 or 4

{110} N

H
P!

I. bcc, N=2, dodecahedron with 12 zone faces

G2=2

G2=2



The Brillouin zone of Three Complex Alloy Phases

III. Quasicrystal, N is infinite, polyhedron with 60 planes
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The larger the number of atoms in the unit cell, the more the number of zone faces, across

which an energy gap opens. This in turn results in a deeper pseudogap on the DOS. As a

result, the electronic energy can be more efficiently lowered by increasing the number of

atoms in the unit cell.

I. gamma-brass, N=52, polyhedron with 36 planes
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II. 1/1-1/1-1/1 approximant, N=160, polyhedron with 84 planes

G2=50



Hume-Rothery (1926) pointed out a tendency for a definite crystal structure to occur at a
particular electron concentration e/a. Mott and Jones (1936) made its first interpretation in
terms of the Fermi surface-Brillouin zone interaction on the basis of the nearly free electron
model.

What is the Hume-Rothery electron concentration rule!

{411}

{330}

H.Jones (1905-1986)N.F.Mott (1905-1996)

William Hume-Rothery (1899-1968)

There exist two different definitions for electron concentration:

e/a versus VEC



Slater-Pauling curve"
Saturation magnetization against VEC

Matthias rule
Superconducting transition temperature against VEC
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Y.Nishino and U.Mizutani (2005)

p- and n-type thermoelectric alloys

Fe2VAl doped with various elements
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VEC =
8"2+5"1+ 3"1

4
= 6.0

Various physical properties fall on a universal curve, when plotted

against the VEC (number of electrons per atom in the valence band)



Electron concentration in the Hume-Rothery electron concentration rule is not

VEC but should be e/a (averaged number of valencies of constituent atoms).
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Model of Jones for the interpretation of the Hume-Rothery
rule on "/# phase transformation in Cu-Zn system

Brillouin zone of fcc

Brillouin zone of bcc
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H.Jones, Proc.Phys.Soc. A49 (1937) 250

Difficulties in model of Jones

Discovery of the neck in the Fermi surface of fcc-Cu by Pippard in 1957

Ignorance of the Cu-3d band

Hume-Rothery commented in 1961 that “the work of the last ten years has made the theory of alloy
structures appear less satisfactory than was the case twenty-five years ago. It is now definitely
established that the assumption of a spherical Fermi surface for pure Cu is quite unjustified…”.
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Current understanding of fcc/bcc phase transformation of Cu on the

basis of the first-principles FLAPW electronic structure calculations in

combination with density functional theory

! 

U = "
i

i

# $
1

2

n(r)n( % r )

r $ % r 
drd % r && + n(r) "

XC
n(r)( )$µ

XC
n(r)( )[ ]& dr
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W.Kohn and L.J.Sham, Phys.Rev. 140 (1965) A1133

One-electron band structure
energy due to both valence and

core electrons

exchange-correlation energyaverage interaction energy

of electrons known as the

Hartree term
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FLAPW valence band structure and van-Hove singularities in fcc-Cu

due to contact with {111} zone planes

due to contact with {200} zone planes

due to overlap across
{111} zone planes



Fcc-Cu

Evidence for the neck

against {111} zone planes

Bcc-Cu

The first-principles band calculations prove that the

ignorance of the Cu-3d band was a vital failure in

the model of Jones. This led him to a wrong location

of van-Hove singularities and overestimation of

their sizes in both fcc and bcc Cu.
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You can see that the van-Hove singularities are negligibly small in both fcc- and bcc-Cu.
The band structure energy difference arises essentially from the difference in Cu-3d
bands and amounts to about 10 kJ/mole in favor of the bcc structure.
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The stability of fcc Cu is correctly predicted, only if the electron-electron term is

properly evaluated.
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We believe the situation in complex alloy phases

to be different from that in fcc and bcc Cu,

where van-Hove singularities  are too small to

affect the total energy.

As is clear from the argument above, the interpretation of &/'
phase transformation in the Cu-Zn system is still far from our goal.



---First-principles LMTO band calculations---
The origin of the pseudogap was attributed to the Mn-3d/Al-3p orbital hybridizations

A pseudogap across the Fermi level plays a key role in

stabilizing a complex alloy phase

T.Fujiwara, Phys.Rev.B 40 (1989) 942

Al-Mn approximant

Mn-3d/Al-3p bonding states

Mn-3d/Al-3p anti-bonding states

EF
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<550>

2d~4 Å

$F~4 Å

Resonance of electrons having the wave length $F

with a set of lattice planes with spacing 2d.

We are interested in e/a-dependent phase stability
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Orbital hybridization effect would occur
not only in crystals but also in non-
crystalline systems like liquid metals
and amorphous alloys.

Orbital hybridizations

FsBz interaction is unique in well-ordered
systems like crystals and quasicrystals

Anti-Bonding energy level

Bonding energy level HOMO

LUMO

EF
Al-3p Mn-3d

FsBz interaction



An increase in the number of atoms in unit cell accompanies an increase in

Brillouin zone planes

V. Quasicrystal, N is infinite, polyhedron with 60 planes

The gamma-brass is complex enough to produce
a sizeable pseudogap at the Fermi level but is
still simple enough to perform the FLAPW band
calculations with an efficient speed.

{110} N

H
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I. bcc, N=2, dodecahedron with 12 planes

G2=2

{002}

{111}

II. fcc, N=4, truncated octahedron with 14 planes

G2=3 or 4

III. gamma-brass, N=52, polyhedron with 36 planes
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IV. 1/1-1/1-1/1 approximant, N=160, polyhedron with 84 planes

G2=50



Inner Tetrahedron (IT)

Outer Tetrahedron (OT)

Octahedron (OH)

Cubo Octahedron (CO)

(b)

(a)

26-atom cluster

The 26-atom cluster forms either bcc or CsCl-structure and contains 52 atoms in the unit cell.

Gamma-brasses with the space group P43m and I43m



ZnII

CdII

AlIII

GaIII

InIII

SnIV

1
CuI

AgI

AuI
21/13

Our objective is to explore if all gamma-brasses listed here

are stabilized via the same mechanism at e/a=21/13

In literature, all isostructural gamma-brasses
above had been implicitly assumed to be
stabilized at e/a=21/13 or the valency of the
partner element to be forced to take a value
to fulfill the total e/a equal to 21/13.

Empirical Hume-Rothery e/a rule for
gamma-brasses in the past
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DOS of Cu9Al4 gamma-brass

The FsBz interaction is really responsible for the formation of the pseudogap?
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"k+Ghkl
(E,r) : FLAPW basis function

Principle for the extraction of the FsBz interaction from the first-principles

FLAPW (Full-potential Linearized Augmented Plane Wave method) band calculations
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FLAPW-Fourier Analysis
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We extract the electronic state k+Ghkl having the largest Fourier coefficient in wave
function (1) at symmetry point N with the energy eigen-value near the Fermi level. This
is nothing but the extraction of the set of lattice planes resonating with electron waves.



Cu5Zn8 and Cu9Al4 gamma-brasses in group 1
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E-k dispersions and DOS derived from FLAPW for Cu5Zn8 gamma-brass
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R.Asahi, H.Sato, T.Takeuchi and U.Mizutani, Phys.Rev. B 71 (2005) 165103
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E-k dispersions and DOS derived from FLAPW for Cu9Al4 gamma-brass
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 Cu5Zn8 gamma-brass

1: {211}, 2: {310}, 3: {321}, 4: {411}+{330}, 5: {332}, 6: {510}+{431}, 7: {521}, 8: {530}+{433}, 9: {611}+{532}
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The Fourier coefficient is extremely large at G2=18. This implies that electron waves near

the Fermi level exclusively resonate with the set of {411} and {330} lattice planes with

G2=18, resulting in the formation of the pseudogap.

FLAPW-Fourier spectra for the wave function outside the MT sphere at

the point N at energies immediately below the Fermi level



Evaluation of the e/a value by means of the FLAPW-Fourier method

---Hume-Rothery plot---

This technique is now extended to a whole valence band. We need to do this only in the irreducible
wedge of the Brillouin zone. The wedge is divided into 200 elements and the electronic state (ki+G)
having the largest Fourier coefficient for the wave function at energy E in the i-th element is
extracted. This is done for all elements over i=1 to 200 and an average value of (ki+G) av is
calculated. In this way, a new single-branch dispersion relation E-(ki+G) av for electrons extending
outside the MT sphere is derived in the extended zone scheme.

We have so far limited ourselves to the extraction of the largest plane wave component of the FLAPW wave
function only near the Fermi level and only at the symmetry point N.
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k+G
E
" #

i
k
i
+G

E
i=1

N=200

$

 Once the E-(k+G) is determined, the Fermi diameter 2kF is obtained from the value of 2(k+G) at EF.

The e/a is immediately calculated by inserting the
Fermi diameter 2kF into the relation below:

! 

(e/a)total =
"

3N
2kF( )

3

The variance ( must be small to validate this approach.

N=52:number of atoms in the unit cellirreducible wedge



E-{2(k+G)}2 relations for itinerant electrons for Cu5Zn8 and Cu9Al4 gamma-brasses

 ---Hume-Rothery plot---

(2kF)2=18.47 for Cu5Zn8

(2kF)2=18.45 for Cu9Al4
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Ekman (1931) studied the TM-Zn gamma-brasses and proposed that they obey

the Hume-Rothery electron concentration rule with e/a=1.60, provided that the

valency of the TM element is zero.

W.Ekman, Z.Physik.Chem. B 12 (1931) 57

Studies of TM2Zn11 (TM=Ni, Pd, Fe, Co) gamma-brasses in group 2



FLAPW-derived E-k relations and DOS for Ni2Zn11 gamma-brass
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G2=18 resonance is active in
Ni2Zn11 gamma-brass.
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FLAPW-derived E-k relations and DOS for Pd2Zn11 gamma-brass
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FLAPW-Fourier spectra just below and above the

pseudogap in Pd2Zn11 gamma-brass
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FLAPW-derived E-k relations and DOS for Co2Zn11 gamma-brass
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The G2=18 resonance still

survives only above the Fermi

level in Co2Zn11.
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FLAPW-derived E-k relations and DOS for Fe2Zn11 gamma-brass
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survives only above the Fermi

level in Fe2Zn11.



(2kF)2=19.36 for Ni2Zn11

          =19.27 for Pd2Zn11

(2kF)2=19.5 for Co2Zn11

         =20.0 for Fe2Zn11
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E-(k+G)2 relations for itinerant electrons for TM2Zn11 (TM=Ni, Pd, Co, Fe) gamma-brasses

 ---Hume-Rothery plot---
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20.019.519.2719.3618.4518.47
(2kF)2 deduced

form the H-R plot

!!18181818
|G|2 deduced

from the FLAPW-
Fourier method

XXA pseudogap
formed below EF

Fe2Zn11Co2Zn11Pd2Zn11Ni2Zn11Cu9Al4Cu5Zn8

Gamma-brasses in group 1 obey the Hume-Rothery e/a law with e/a=21/13

The Hume-Rothery stabilization mechanism refers to the mechanism, in which a
pseudogap is formed across the Fermi level as a result of electron waves resonating
with a particular set of lattice planes and thereby the particular e/a value is specified.

group (1) group (2)



Summary for gamma-brasses in groups 1 and 2
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