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The various sensuously possible cases of figures are not, as in Greek 
geometry. individually conceived and investigated, but all interest 
is concentrated on the manner in which they mutually proceed from 
each other. Insofar as an individual form is conceived, it never 
stands for itself alone but as a symbol of the system to which it 
belongs and as an expression for the totality of forms into which it 
can be transformed under certain rules of transformation. 

Jean-Victor Poncelet 

1. INTRODUCTION 

Mathematicians communicate with pictures: a quick sketch on a coffee stained paper 
napkin, a saddle drawn on the blackboard before a calculus class, the totem figure of the 
discipline conjured up on the viewgraph before a learned audience of specialists. Illus- 
trating some mathematical idea, one should be able to reconstruct the picture quickly, 
from memory, and with sufficient skill to ignite the desired idea in the viewer’s mind. 
More elaborate pictures should be so drawn as to withstand the entropy of repeated 
mechanical reproduction. A truly heroic test is for the picture to survive a sequence of 
transfers, e.g., from design board to tracing paper, to xeroxed preprint, to acetate plastic 
film, to thermofaxed ditto master, and thus to handout before a lecture. Commonly, these 
pictures consist of elaborate typographical symbols or graphs of real valued functions of 
one variable. But when these pictures are not two-dimensional, one problem is to discover 
and organize some simple combinatorial rules for drawing pictures of mathematical sur- 
faces extended in space.. Any solution is subject to both geometrical and graphical con- 
straints. The former are part of low-dimensional topology. The latter do not as yet belong 
to any particular mathematical discipline. 

By graphical constraints we shall mean all the conditions of medium, recall, repro- 
ducibility, and artistic detail that just suffice to evoke a mental perception of the surface. 
These constraints are more utilitarian than aesthetic in nature. The graphical calculus we 
seek to develop should be easily learned and taught, and applicable to diverse areas of 
geometry and topology. The geometrical constraints are set, of course, by the abstract 
concepts one wishes to illustrate. To illustrate them is to encode these ideal mathematical 
objects in a pictorial language. The picture is itself a construction of the mind. What is 
on paper is a secondary set of graphical symbols that encodes the mental picture by a 
variety of conventions, tricks, and illusions. In the first part of this paper we summarize 
some of the graphical devices we have collected from many sources, including the works 
of Maurits Escher, and have adapted them to our limited artistic talents with much 
practice and experimentation. For now they are meant to be suggestions on how to draw 
effectively what is seen so clearly in the mind. A good set of pictures often forestalls a 
premature flight into algebraic abstraction at the expense of the interest and comprehen- 
sion of the hearer. In the second part we “practice what we preach” by telling a picture 
story about a certain class of eversions of the sphere. 
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2. TECHNIQUES AND TERMINOLOGY 

Systematic geometry has always benefited from the axiomatic approach and we hope 
that our graphical calculus will eventually yield also to a formal treatment. For the present 
we proceed informally, borrowing rigorous definitions from differential topology as 
needed. Golubitsky and Guillemin’s fine text [I] is more than adequate for this purpose. 
This is not to suggest, however, that differential topology is the correct discipline for the 
visual category. Many ideas in geometric topology and algebraic geometry, as they are 
first grasped intuitively and not as they are finally written up, make use of the same kind 
of visualizations. 

Roughly speaking, a slrrjcrce is what we draw a picture of . . . lines are what we draw 
the picture with . . . and a point is where we center our attention when looking at a detail 
of the surface. We regard a visible subset of 3-space as a surfuce if it can be presented 
locally by a certain class of smooth, model mappings, F : R2 -+ R3, (X,Y,Z) = 
F(x,p). By a picture of’ the surface we shall mean a projection of the image of F to the 
viewing plune, augmented by a set of graphical conventions indicating how the surface 
is to be imagined from the picture. All of our basic notions are illustrated in Fig. 1. The 
location of a picture is given by a three digit numeral specifying the figure number, row 

Fig. 1. 
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from top, and column from left. Thus, (153) refers to the Moebius band spanning the 
trefoil knot. 

The parametric approach is more flexible and constructive than one in which we regard 
the surface as defined implicitly by constraints, I/(X, Y,Z) = 0. For example, Whitney’s 
umbrella [23 (upper detai: of 111) is modelled on X = x, Y = -p*, Z = ~1, where 
XYZ are the observer’s coordinates: left-to-right/down-to-up/far-to-near, with the origin 
at the center of attention. Setting Z = a(- Y)l’*X, we think of the surface as generated 
by two horizontal lines, initially coincident along the X axis, rotating in opposite direc- 
tions as they sink down the double line along the negative Y axis. Bending the X axis 
down, Y’ = Y - tX*, 0 5 t 5 1 (small arrows), produces the parabolic umbrella, F = 

(x,-x2-_s*,xy) in (111) reminiscent of the top of Steiner’s crosscap. A bend in the op- 
posite direction produces a hyperbolic umbrella (nor shown), which is a projection of the 
complex branchpoint (x-,y,x*--~*,2.~~) from 4-space. The cubic form, X*Y + Z*, which 
vanishes on the ruled umbrella, is not nearly this flexible. Furthermore, it also vanishes 
on the extraneous, one-dimensional whisker extending above the surface along the pos- 
itive Y axis. 

Even when explicit formulas are inconveniently difficult to write down, we can pseudo- 
parametrically describe motions intended to be imagined between consecutive pictures. 
Thus, to pass from the bent umbrella (111) to the bent but otherwise nonsingular quad- 
rilateral (112), retract a border segment transverse to the double line, somewhat like 
raising a window shade. Now stretch it out again with a left twisting motion suggested 
by the arrow (112) to reach Whitney’s cusp (113) [31. This surface, parametrized by X 
= z3 + ‘z,, Y = ?‘, z = z, graphs a cubic bifurcation with abscissa Z, ordinate X, and 
time axis Y. Rewriting, 

[;]=[‘q+b+3**)[;] (*) 

displays the surface as generated by straight lines parallel to the viewing plane, moving 
along the cubic spiral, which forms the apparent contour or horizon of the surface. Under 
projection, these lines are tangent to Neil’s cusp (semicubical parabola) from which the 
surface takes its name. We refer to Chaps. 6 and 7 of [ 11, for further topological details. 

Already, the reader will have observed a distinction between intrinsic, uppurent, and 
uuxiliury surface features, all of which we depict by drawing lines. The border curves, 
frequently introduced to delimit a surface detail, are almost always of the last kind. 
Sometimes though, as in surfaces spanning knots and links, the borders have an intrinsic 
meaning. intrinsic to the surface are those features that are independent of the position 
it has been placed for projection into the viewing plane. Thus, a pinchpoint (the origin 
in the umbrella) and the double line, where two sheets of the surface cross, are intrinsic. 
The appurent features are accidents of the viewing position, but correspond to intrinsic 
features of the projection. Thus, a contour line, along which a visible sheet of the surface 
bends out of view, is induced on the surface by the projection. It is the locus of points 
where the surface-normal is perpendicular to the viewing direction or, more practically, 
where the surface-tangent-plane passes through the observer. A cusp point occurs on the 
contour when its tangent on the surface parallels the viewing direction. 

Since these three kinds of lines are easily confused in a picture, we use several ele- 
mentary tricks of perspective to force the eye to distinguish between them. The principles 
of linear perspective, that is, the foreshortening (especially) of surfaces with rectangular 
faces are well known from projective geometry. For curved surfaces we use linear per- 
spectil*e on auxiliary surfaces, such as coordinate planes, to induce the illusion of depth. 
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However, the surface pictured is also given finite thickness by drawing the borders heavy 
or light according to the angle made to the viewing direction. This, in turn, becomes the 
clue for a border line. 

TO improve the separation of contours from borders we use some rudimentary shading, 
which is part of crer-ial persprctive. The surface bends away along the contour, so shding 
suggests decreasing reflection of light in the viewing direction. Secondly, a face of a 
surface further away should be darker than a nearer one. Finally, one part of the surface 
may throw a shudu~~ on another. For technical simplicity and reliable reproducibility, 
we use a somewhat stylized shading technique based on a field of lines (or one- 
dimensional foliation). Differently oriented line fields help contrast different faces of a 
surface; like oriented line fields are useful to continue a face past an occlusion. A pair of 
transverse line fields usually suffices to deepen the tone, as for a shadow. 

But, with only two grey tones (solid black regions are useless because they do not 
reproduce correctly on most copiers) we cannot obey all the rules of aerial perspective. 
The eye will probably scan each region of the picture separately to extract the information 
completely. Therefore, we choose for the direction of illumination the opposite of the 
viewing direction. [Sequence (13 l-133) is an exception, the light source here is in octant 
(+,+,-).I This convention permits us to use both shade and shadow to mark a partial 
occlusion when the occluding front face ends on a border curve. When the occluding face 
terminates along a contour, the conflict of shade and shadow can sometimes be resolved 
by stopping the shade short of the contour to produce the illusion associated with lateral 
inhibition in the retina, known as a Mach litte. This thin highlight (absence of shading) 
close to the contour is exaggerated in (132). 

For both visual and combinatorial purposes, the entire collection of lines to be used 
should be in as general a position as possible in the viewing plane. To simulate motion, 
changes from one picture to the next should be highly controlled. For these two reasons 
we usually begin with a dirrgrunz of all lines, such as (121). This serves as a tracing 
template for the subsequent pictures. It is also easier to memorize the diagram and then 
reconstruct the picture using the ~cclusi~tz rules for border, contour, and double lines. 
The dotted ovals in (121) are shade and shadow delimiters. Thus, we obtain (122) for a 
sphere hovering above the plane and (123) for one intersecting the plane along a parallel 
of latitude. The various occlusion rules are all derived from simple observations, e.g., a 
surface path gains/loses one sheet-depth unit each time its projection crosses a line rep- 
resenting a border, etc. A field of horizontal lines seems adequate to shade the sphere 
(131). Curved lines would probably be more effective visually, but harder to draw. An 
elliptical shadow patch gives the illusion of altitude. Note that without shading, we cannot 
tell from (122) whether (131) or (132) is intended. 

Even with shading we could not tell whether (123) is a sphere intersecting a plane or 
a soft ball resting on the plane. The elliptical double line, where the sphere crosses the 
plane, is tangent to the circular contour of the sphere. Double line/contour tangencies 
produce graphical ambiguities which are harder to resolve than those produced by border/ 
contour tangencies. The latter were reduced by thickening the surface. The most effective 
device we have found to reduce the former is a window that eliminates the need to draw 
the double line altogether, (133). We define a ~~indo~v to be a fully visible topological disc 
which has been removed from the surface. That is. the restriction of a (local) parametri- 
zation F of the surface to a disc in the source of F is an embedding into space, as well 
as into the viewing plane under projection. A window is useful for showing how a surface 
continues behind an occlusion. More generally useful is the ability to place windows in 
such a way that no double lines need to be drawn. If the choice of the viewing direction 
is given some slight flexibility, such windows are always possible. The surface with 
windows is embedded, and its picture requires only border and contour lines. 
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For example, (141) shows a one-sided surface with four windows. The nearest window 
reveals three smaller windows with pairwise linked borders. If we span this link by discs 
intersecting as shown in (151), slide this complex into the surface, and cap the large 
window without intersecting the rest, we obtain Boy’s surfcrce [4,51. This is an immersion 
of the projective plane in 3-space with one double curve crossing itself at a single triple 
point. The contour of this view is a right-handed trefoil knot with three cusps and cross- 
overs. The crossovers can be eliminated by dlirtg the cusps OVCI the contour, as in 
(142). This version of Boy’s surface (152) has two disjoint, simple contours: a circle 
around a delroid (three-cusped hypocycloid). The ~Yhhotz mig/horhwd (143) of the del- 
toid has three right-handed cusps, and thus is isotopic under the motion (113 --, 112) to 
the Moebius band with three half-twists (153). We suggest that the reader draw the 
immersed disc with a triple point, which together with (143) make up Boy’s surface 
situated as in (152). A more difficult exercise would be to use the motion (112 -+ 111) on 
(153) to produce three pinchpoints. Continue the three double lines through a triple point 
and terminate them at three further pinchpoints. The resulting surface will be topologi- 
tally equivalent to Sleiner’s Rot?~utz xurfuce. The challenge is to place the deltoid contour 
of this surface convincingly. 

We close this section with a few remarks on designing the pictures. A slate blackboard 
is useful for laying out the litze diupwtn. This is the set of curves in the .viewing plane 
destined to become the projection of the set of contours and borders of the surface. The 
ease of erasing helps in achieving graphical general position of the diagram. Erasure 
facilitates also the task of finding the occlusions. White chalk for highlights and black 
chalk for accenting th; deepest shades usually suffice to establish the illusion. Colored 
chalk, used to keep track of complicated convolutions of the surface, occasionally pro- 
duces startling visual effects. The method of assemblages for surface-to-surface mappings 
[6- 101 can be used to design a complete set of windows. Building up these combinatorics 
further, such as specifying the position of pinchpoints on the contours, assigning the 
handedness to the cusps and crossovers, etc., one might hope to solve the following 
problem. Given the line diagram, find all possible factorizations 

F P 

M’-+ R3 + RZ. 

where M is a surface, F is a proper, stable mapping, P is a projection, and the compo- 
sition has the given diagram as its singular locus. A combinatorial classification up to 
self-maps of M and regular homotopies in R3 that preserves the line diagram, would be 
very useful in the graphical calculus. 

3. APPLICATION AND EXAMPLES 

Nearly twenty years ago the late Arnold Shapiro rose to Raoul Bott’s challenge to 
give a concrete description of how to evert the sphere. The possibility of turning the 
sphere inside out by a regular homotopy follows from an abstract theorem of Smale [l 11. 
Shapiro’s eversion 112,131 failed to satisfy the visual imagination of his audience. This 
happy fault led to a series of spectacularly artistic illustrations by Tony Phillips [141, 
Charles Pugh [151, Nelson Max [161, and Jean-Pierre Petit [17-193, all based on the 
brilliant eversions visualized by the blind topologist, Bernard Morin [17-201. 

In Fig. 2 we present the essentials of the first (n = 2) of the countable sequence of 
highly symmetric rohrrcco porrc./z el,ersimzs [7], so named for their resemblance (for n = 
5,6,7) to the closing operation of the common French h/NRue uutornatiqrre. These pictures 
were originally developed in collaboration with John Staudt, Timothy Daughters, and the 
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Fig. 2. 

other members of my freshman topology seminar in 1977, after viewing Max’s film. They 
undoubtedly owe a subliminal debt to Morin’s models [20] and to the souvenir pouch he 
gave me in 1972. 

An immersed sphere in 3-space is the image of a smooth map F : s’ + R3 for which 
the Jacobean matrix DF of first partial derivatives is everywhere of rank 2. The sphere 
is etnhedded if F is also one-to-one. A deformation FI, t E [O,l], through immersions is 
a regtrlnr homotopy if t + DFr is also continuous. A regular homotopy through embed- 
dings is an isotop_v. 

Graphically this means that each (sufficiently small) parameter patch on the surface 
looks like the graph of a smooth function on the plane tangent to the center of the patch, 
and that the patch moves isotopically under the deformation we imagine to occur between 
consecutive pictures. Since every patch centered at a pinchpoint has a double line, Whit- 
ney’s umbrella (111) is not an immersed surface. An ei*ersion of the sphere is a regular 
homotopy from the identity inclusion of S* in R3 to the antipodal map of S’. The defor- 
mation 

F( = [X cos(?rt) + Ysin(rrt), - X cos(rrf) + Y cos(mr), Zcos(~r)l, 

(X, Y,Z) E S*, is not an eversion because it fails to be an immersion at t = l/2 along the 
equator Z = 0. 
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Now begin by deforming the sphere isotopically into the shape of a gaszruia. This 
embedded sphere consists of two concentric spherical shells connected by a neck shaped 
like the inner, negatively curved portion of a torus. We have further separated the shells 
into two concentric hemispheres (241) and zones (231). Seen from a point on its axis of 
revolution, the contour of the neck would simply be a circle. We may, however imagine 
how to twist two apparent swallow tails into this contour, like (221). In (211) we made 
the two rims of the so deformed neck elliptical for contrast and used four windows for 
visibility. We could produce such a shape from the gastrula by deforming each spherical 
shell separately into ellipsoidal shells, (232 and 242), with orthogonal major axes. This 
motion is a regular homotopy because a double curve is produced. Note further that, 
while the gastrula is a surface of revolution, the immersed sphere has merely twofold 
symmetry, i.e., it is invariant under a half-turn about its axis. This symmetry may be 
applied to each stage of the regular homotopy. 

Now look again at the ribbon neighborhood (221) of the contour. A regular homotopy 
(arrows) moves the two longer segments across each other into the ribbon neighboring 
a four-cusped hypocycloid, or crstrc~id (222). Observe that both (222) and (242) have a 
fourfold symmetry. If you were to color the sides of the surface, a quarter-turn about 
its axis moves these parts into themselves, but with colors exchanged. This is not yet the 
case for the entire surface, as may be seen from (212). This detail is the result of the 
homotopy (221 + 222) applied to (211). To impose the fourfold symmetry, press down 
on the upper rim at nine and three o’clock to obtain (213). Placing windows in a symmetric 
way into (213) produces an immersed annulus that could look like (223). With some effort 
one can imagine that the double line of (223) forms a bouquet with four loops and four 
loose ends tied together at the quadruple point where the four windows cross the axis. 
Fitting (223) to (242) produces a version of Mwin’s surfuce (233). (243) is its reflection 
in a mirror. We leave to the reader the exercise of producing a more conventional view 
of Morin’s surface by rolling the four cusps over the contour. To complete the eversion, 
apply the reverse of this homotopy to the other pair of opposite segments of the astroid 
contour. 

The essential point, however, is that one really needs only the five embedded details 
(21 l-222) to argue convincingly for the existence of the homotopy, without worrying 
about the exact placement of the double curves. This idea generalizes to all symmetries 
of even order, 17 = 2,4,6, . . . . The contour of the middle stage, which is a generalization 
of Morin’s surface, is an alternating torus knot that projects to a stellated hypocycloid 
of 217 cusps. This surface is invariant under a l/2/7 turn about the axis, exchanging color; 
the homotopy is invariant under a l//7 turn. 

For odd 17, a different type of eversion is produced by this device. An odd number of 
swallow tails are twisted into the neck of a gastrula. The case n = 3 is illustrated in Fig. 
3. Picture (311) is a stylized analog of (211) as it would result directly from the combi- 
natorics of 191 applied to the contour of a distorted but still embedded sphere. The six 
cusp-ears of the ribbon neighboring the contour are joined by bridges to the annular 
rims of concentric spherical shells. In (312) the long arms have moved across the axis by 
a threefold (rotationally) symmetric regular homotopy. Note that the bent ribbon in (312) 
is a twofold cover of the Moebius band with three cusps (143) under normal projection. 
One should imagine a copy of (143) situated between the ribbon. Now move the ribbon 
normally through the Moebius band to position (321). While the colors have exchanged 
for the bent ribbon, they have not done so for the spherical shells, which have not moved 
yet. 

Now uncross the long arms of the bent ribbon to (331) to obtain a ribbon like that of 
(311) but with colors exchanged. Unlike (311), however, the window borders of (331) are 
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Fig. 3 

linked and so the surface is only immersed. Exchange the spherical shells as suggested 
by their rims to obtain (333), which is isotopic to (311) with colors exchanged. 

Although the essential part of this homotopy also proceeds in the (immersed) normal 
bundle of Boy’s surface (or its generalization for odd II > 3) it differs in one curious 
respect from the original eversions of this type [12,14,2,,, 7 ‘31. These take the standard 
sphere to a surface which parallels Boy’s surface twice. Think of the skin of a thickened 
Boy’s surface. This immersed sphere everts by a motion along the field of lines normal 
to Boy’s surface, which it covers twice at half-time. Running the first part of the regular 
homotopy backwards returns the surface to the standard position with sides exchanged. 
Our homotopy (fleched arrows) does not possess this time symmetry, although it too 
passes through a parallel neighbor of Boy’s surface (321). To recover temporal symmetry, 
exchange the spherical shells attached to the annular rims at the same time as the branches 
of the ribbon (312 + 322). These two (isotopic) surfaces are not parallel to Boy’s surface. 
Each is the image of a sphere immersed (not embedded) in the abstrdct normal bundle of 
the projective plane. This immersion crosses itself and the zero section along a double 
curve which is fixed, like a hinge, during the mode1 of the motion (312 + 322). Now, 
motion (322 + 332) is essentially the same as (312 + 311). 

We close this paper with a brief remark on Mot-in’s brilliant parametrization [211 of 
the tobacco pouch eversions. His formu!as proceed analytically from the motion of the 



Drawing surfaces 281 

contours in a way analogous to how we construct our pictures. The germ of the analogy 
is contained in the parametrization (*) of Whitney’s cusp. However, computer graphical 
displays driven by his formulas do not produce our pictures: only the projection of the 
moving contour is the same. We leave a full discussion of this interesting discrepancy for 
another day. 
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