
12feb19
Summary of Concluding Talk on
"Backprop in Neural Nets and Automatic Differentiation"

In the first of these two seminars I left two items undone which were completed in the second
talk.

In the second, I first showed that the methodology (presented in the first talk) of keeping
track of the component steps in evaluating a function (from many independent variables to fewer
dependent variables) as described in the Baydin++ survey paper, "worked" for the case of a
neural net with one hidden layer proposed by Trask for the XOR function.

Using the notation in the distilled Trask code (top of the first page of the handout
following), Trask iterates the calculation of the mapping

y2 = f(W1,w2) = sigma(sigma(X0 W1) w2)

by back-propagating the gradient descent of the energy function on the output space

y = 1/2 |y0 - y2|^2

to two dynamical systems in the weight spaces of the matrix W1(4,3) and of the vector w2(4,1).
Here X0 is the matrix of all four possible truth values of two Booleans, and y0 is the exact
value vector of their Boolean XOR product, and sigma(.) is the termwise application of the
logistic sigmoid function.

My first attempt to apply the method of backward automatic differentiation to this example,
which was a failure, served only as a warning to watch one's notation when a mixture of matrix
and Hadamard array products is involved. It should be ignored here.

On the top of the following page of the handhout is the reverse automatic differentiation, and
(bottom) the pedantic tracing of the actual value of each auxillary variable, v_i.

Note that I relabelled the adjoints by ai. The first = is a definition of the adjoint, the next
='s are an application of the chain-rule, and only the last = assigns a numerical value the
program has already calculated at that step.

The remarkable thing is that I did manage a derivation of Trask's update step for the weights
(up to a +/- sign), but could not justify his intermediate substitution into a variable he
originally associated with Rumelhart's deltas, and which I mistakenly mislabeled as dy2 and
dY1, but now call yy2 and YY1 because they are neither a differential nor a gradient, but some
sort of a mixture.

Then, I demonstrated by some simple experiments, a disquieting feature of this very elementary
example of a "deep" neural net, namely the instability of the back-propagated dynamical sytem
to the weight spaces.

In the choice of the initial values of the weights, Trask follows the industry recommendation
of using random values. So outcomes labelled out1 and out10 use such a random initial value,
iterated 600, respectively 6000 times. The output 4-vectors and the weights appear to be
settling down.

In the second experiment, I perversely choose 0 for all initial weights with the expected
failure of NN that all four output values are near 1/2.

In the final experiment I chose all 16 initial weights to be zero, exept two, which were set to
a nonzero value. The NN succeeded, with more effort to at least show the right trend by 600
iterations (out3) and 6000 iterations (out30). But unlike the random initialization in the
first experiment, the values of the weights do not seem to be settling down to a limiting
value, they seem to continue to wander.

Obviously, this isn't a very persuasive, and certainly not systematic set of five experiments.
But it suggests that back propagation of a totally elementary gradient dynamical system, while
is seems to work, does not do so in a very predicatable way.

#5feb19 from playInits 28jan19 PAGE 0

import numpy as np ## Python library for array operations
X0 = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]]) ## X0(4,3)=4rows of 3vcrs
y0 = np.array([[0,1,1,0]]).T ## XOR, y0(4,1) column vector
W1= 2*np.random.random((3,4))-1 ## W1(3,4) signed fractions
w2= 2*np.random.random((4,1))-1 ## w2(4,1) signed fractions

for jj in xrange(600):
 Y1 = 1/(1+np.exp(-(np.dot(X0,W1)))) ## Y1(4,4)=sigma(X0(4,3)W1(3,4))
 y2 = 1/(1+np.exp(-(np.dot(Y1,w2)))) ## y2(4,1)=sigma(Y1(4,4)w2(4,1))

 dy2= (y0-y2)*y2*(1-y2) ## dy2(4,1)*Hadamard y2*(1-y2)
 dY1= dy2.dot(w2.T)*Y1*(1-Y1) ## dY1(4,4) = dy2(4,1)w2.T(1,4)*Had Y1*(1-Y1)

 w2 += Y1.T.dot(dy2) ## w2(4,1) += Y1.T(4,4)dy2(4,1)
 W1 += X0.T.dot(dY1) ## W1(4,4) += X0.T(3,4)dY1(4,4)

==

#5feb19 from playInits 28jan19 PAGE 1 IGNORE

import numpy as np ## Python library for array operations
X0 = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]]) ## X0(4,3)=4rows of 3vcrs
y0 = np.array([[0,1,1,0]]).T ## XOR, y0(4,1) column vector
W1= 2*np.random.random((3,4))-1 ## W1(3,4) signed fractions
w2= 2*np.random.random((4,1))-1 ## w2(4,1) signed fractions

for jj in xrange(600):
 Y1 = 1/(1+np.exp(-(np.dot(X0,W1)))) ## Y1(4,4)=sigma(X0(4,3)W1(3,4))
 y2 = 1/(1+np.exp(-(np.dot(Y1,w2)))) ## y2(4,1)=sigma(Y1(4,4)w2(4,1))

 dy2= (y0-y2)*y2*(1-y2) ## dy2(4,1)*Hadamard y2*(1-y2)
 dY1= dy2.dot(w2.T)*Y1*(1-Y1) ## dY1(4,4) = dy2(4,1)w2.T(1,4)*Had Y1*(1-Y1)

 w2 += Y1.T.dot(dy2) ## w2(4,1) += Y1.T(4,4)dy2(4,1)
 W1 += X0.T.dot(dY1) ## W1(4,4) += X0.T(3,4)dY1(4,4)

 X0, y0:
 v00= W1
 v0 = w2
 v1 = X0 W1 = X0 V00
 v2 = Y2 = sigma(v1) ;; dv2/dv1 = *v2*(1-v2)
 v3 = Y1 w2 =v2 v0 ;; dv3/dress-upv2 h = h v0 but dv3/dv2 k = v2 k -- Matrix product
 v4 = y2 = sigma(v3)
 v5 = y = 1/2 |y0 - y2|^2 = 1/2 |y0 - v4|^2

 av5 = dy/dv5 = dy/dy = 1 ;; av5(1)
 av4 = dy/dv4 = av5 dv5/dv4 = (v4 - y0)T ;; av4(1,4) chain rule
 av3 = dy/dv3 = av4 dv4/dv3 = av4*(v4)*(1-v4) ;; s' = s(1-s) Hadamard
 av2 = dy/dv2 = av3 dv3/dv2 = av3 v0 ;; I hope that's right
 av1 = dy/dv1 = av2 dv2/dv1 = av2*v2*(1-v2) ;;
 av0 = dy/dv0 = av3 dv3/dv0 = av3 v2 ;;

 dy/dw2 derailed

#5feb19 from playInits 28jan19 PAGE2

-----------------------------Trax's 1-layer deep NN for XOR-------------
 X0(4,3) 4rows of 3vcrs
 y0(4,1) column vector

 W1(3,4) signed fractions
 w2(4,1) signed fractions

 Y1(4,4)=sigma(X0(4,3)W1(3,4))
 y2(4,1)=sigma(Y1(4,4)w2(4,1))

 yy2(4,1) = (y0-y2)*Hadamard y2*(1-y2) -> w2(4,1) += Y1T(4,4)yy2(4,1)
 YY1(4,4) = yy2(4,1)w2T(1,4)*Hadd Y1*(1-Y1) -> W1(4,4) += X0T(3,4)YY1(4,4)

---------------------------------reverse auto diff -----------------------
 X0, y0
 v- = W1
 v0 = w2
 v1 = X0 W1 = X0 v-
 v2 = Y2 = sigma(v1) ;; dv2/dv1 = *v2*(1-v2)
 v3 = Y1 w2 =v2 v0 ;; dv3/dv2 h = h v0 but dv3/dv2 k = v2 k -- Matrix product
 v4 = y2 = sigma(v3)
 v5 = y = 1/2 |y0 - y2|^2 = 1/2 |y0 - v4|^2

 a5 = dy/dv5 = dy/dy = 1 ;; av5 scalar
 a4 = dy/dv4 = a5 dv5/dv4 = (v4 - y0)T ;; chainrule + a4(1,4)
 a3 = dy/dv3 = a4 dv4/dv3 = a4*v4*(1-v4) ;; s' = s(1-s) + Hadamard
 a2 = dy/dv2 = a3 dv3/dv2 = a3 (. v0) ;; (.v0)h = (h v0)
 a1 = dy/dv1 = a2 dv2/dv1 = a2*v2*(1-v2) ;; s' = s(1-s) + Hadamard
 a0 = dy/dv0 = a3 dv3/dv0 = a3 (v2 .) ;; (v2.)h = (v2 h)
 a- = dy/dv- = a1 dv1/dv- = a1 (X0 .)

================================= now find out the current and next value================

#5feb19 from playInits 28jan19 PAGE 3

-----------------------------Trax's 1-layer deep NN for XOR-------------
 X0(4,3) 4rows of 3vcrs
 y0(4,1) column vector

 W1(3,4) signed fractions
 w2(4,1) signed fractions

 Y1(4,4)=sigma(X0(4,3)W1(3,4))
 y2(4,1)=sigma(Y1(4,4)w2(4,1))

 yy2(4,1) = (y0-y2)*Hadamard y2*(1-y2) -> w2(4,1) += Y1T(4,4)yy2(4,1)
 YY1(4,4) = yy2(4,1)w2T(1,4)*Hadd Y1*(1-Y1) -> W1(4,4) += X0T(3,4)YY1(4,4)

---------------------------------reverse auto diff -----------------------
 X0, y0
 v- = W1
 v0 = w2 ;; current value of var
 v1 = X0 W1 = X0 v- = X0W1
 v2 = Y2 = sigma(v1) = sigma(X0W1) = Y1
 v3 = Y1 w2 =v2 v0 = Y1w2
 v4 = y2 = sigma(v3) = sigma(Y1w2 = y2
 v5 = y = 1/2 |y0 - y2|^2

 a5 = dy/dv5 = dy/dy = 1
 a4 = dy/dv4 = a5 dv5/dv4 = (v4 - y0)T = (y2-y0)T
 a3 = dy/dv3 = a4 dv4/dv3 = a4*v4*(1-v4) = (y2-y0)T*y2*(1-y2) ~~ -yy2T ??
 a2 = dy/dv2 = a3 dv3/dv2 = a3 (. v0) = -yy2T (. w2) ~~
 a1 = dy/dv1 = a2 dv2/dv1 = a2*v2*(1-v2) = -yy2T(.w2)*Y1*(1-Y1)~~ YY1T ??
 a0 = dy/dv0 = a3 dv3/dv0 = a3 (v2 .) = -yy2T(Y1.) ~~
 a- = dy/dv- = a1 dv1/dv- = a1 (X0 .) = YY1T (X0.) ~~

 a- = dy/dW1 -> W1 += - dy/dW1 T = -(a-)T = (-YY1T (X0.))T = -X0T YY1 ;;bingo
 a0 = dy/dw2 => w2 += - dy/dw2 T = -(a0)T = (yy2T (Y1 .))T = -Y1T yy2 ;;bingo
 except for a sign problem

